Physics of the Solid State

, Volume 60, Issue 12, pp 2579–2592 | Cite as

Energy Transfer from Ce3+ to Tb3+ in Yttrium and Gadolinium Orthoborates Obtained by Hydrothermal Synthesis

  • S. Z. ShmurakEmail author
  • V. V. Kedrov
  • A. P. Kiselev
  • T. N. Fursova
  • O. G. Rybchenko


We studied the structure, IR absorption spectra, the spectral characteristics of photoluminescence and morphology of cerium- and terbium-doped orthoborates of gadolinium and yttrium obtained by hydrothermal synthesis at 200°C, as well as solid solutions of orthoborates on the basis of yttrium, gadolinium, and lutetium with composition RECe0.01Tb0.1BO3 (RE = Lu0.5Gd0.39, Lu0.5Y0.39, and Y0.5Gd0.39). The X-ray diffraction spectrum of yttrium orthoborate Y1 – x  yCexTbyBO3 is described by a hexagonal lattice with space group P63/m, which, after annealing at 970°C, transforms into a monoclinic lattice with space group C2/c. High-temperature annealing of the studied orthoborates leads to a multiple, more than two orders of magnitude, increase in the luminescence intensity of Tb3+ ions when the samples are excited in the absorption band of cerium ions. This effect is the result of a significant increase in the concentration of Ce3+ ions in the orthoborates at high temperatures. It is shown that the luminescence of terbium ions is due to energy transfer from Ce3+ to Tb3+, which proceeds with high efficiency (∼85%) by the mechanism of dipole-dipole interaction between cerium and terbium.



We thank E.Yu. Postnova for the study of the morphology of samples and N.F. Prokopyuk for assistance in conducting the experiments.


  1. 1.
    S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and I. M. Shmyt’ko, Phys. Solid State 58, 578 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    Xiao-Cheng Jiang, Ling-Dong Sun, and Chun-Hua Yan, J. Phys. Chem. B 108, 3387 (2004).CrossRefGoogle Scholar
  3. 3.
    J. Ma, Q. Wu, Y. Ding, and Yun Chen, Cryst. Growth Des. 7, 1553 (2007).CrossRefGoogle Scholar
  4. 4.
    Jun Yang, Chunxia Li, Xiaoming Zhang, Zewei Quan, Cuimiao Zhang, Huaiyong Li, and Jun Lin, Chem. Eur. J. 14, 4336 (2008).CrossRefGoogle Scholar
  5. 5.
    Jun Yang, Cuimiao Zhang, Lili Wang, Zhiyao Hou, Shanshan Huang, Hongzhou Lian, and Jun Lin, J. Solid State Chem. 181, 2672 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    Yanping Li, Jiahua Zhang, Xia Zhang, Yongshi Luo, Shaozhe Lu, Xinguang Ren, Xiaojun Wang, Lingdong Sun, and Chunhua Yan, Chem. Mater. 21, 468 (2009).CrossRefGoogle Scholar
  7. 7.
    Jun Yang, Honggui Zhang, Zhenling Wang, Chengzhi Huang, Lei Zou, Peng Cai, Yunfei Zhang, and Shanshan Hu, J. Mater. Sci. 48, 2258 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and O. G. Rybchenko, Phys. Solid State 59, 1171 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, and J. C. Cousseins, J. Solid State Chem. 128, 261 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    R. E. Newnham, M. J. Redman, and R. P. Santoro, J. Am. Ceram. Soc. 46, 253 (1963).CrossRefGoogle Scholar
  11. 11.
    Zhang Hao, Chen Jindeng, and Guo Hai, J. Rare Earths 29, 822 (2011).CrossRefGoogle Scholar
  12. 12.
    Zhongyi Zhang, Yunhong Zhang, Xiaoli Li, Jianhua Xuc, and Yan Huang, J. Alloys Comp. 455, 280 (2008).CrossRefGoogle Scholar
  13. 13.
    Ling Li, Shihong Zhou, and Siyuan Zhang, Solid State Sci. 10, 1173 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    A. Szczeszak, T. Grzyb, St. Lis, and R. J. Wiglusz, Dalton Trans. 41, 5824 (2012).CrossRefGoogle Scholar
  15. 15.
    C. E. Weir and E. R. Lippincott, J. Res. Natl. Bureau Stand. A 65, 173 (1961).CrossRefGoogle Scholar
  16. 16.
    J. H. Denning and S. D. Ross, Spectrochim. Acta A 28, 1775 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    Xiao-Cheng Jiang, in Series of Selected Papers from Chun-Tsung Scholars (Peking Univ., 2003). Scholar
  18. 18.
    Yu Hua Wang, Chun Fang Wu, and Jia Chi Zhang, Mater. Res. Bull. 41, 1571 (2006).CrossRefGoogle Scholar
  19. 19.
    Jie Ma, Qingsheng Wu, Yun Chen, and Yijun Chen, Solid State Sci. 12, 503 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Szczeszak, K. Kubasiewicz, T. Grzyb, and S. Lis, J. Lumin. 155, 374 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, and I. M. Shmyt’ko, Phys. Solid State 57, 18 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    S. Z. Shmurak, V. V. Kedrov, A. P. Kiselev, T. N. Fur-sova, and I. M. Shmyt’ko, Phys. Solid State 57, 1588 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    M. J. Weber, S. E. Derenso, and C. Dujardin, in Proceedings of the International Conference on Inorganic Scintillators and Their Applications, SCINT 95, Delft, The Netherlands, Aug. 28–Sept. 1, 1995, Ed. by P. Dorenbos and C. W. E. van Eijk (Delft, The Netherlands, 1996), p. 325.Google Scholar
  24. 24.
    N. V. Klassen, S. Z. Shmurak, I. M. Shmyt’ko, G. K. Strukova, S. E. Derenso, and M. J. Weber, Nucl. Instrum. Method. Phys. Res., Sect. A 537, 144 (2005).Google Scholar
  25. 25.
    E. M. Levin, R. S. Roth, and J. B. Martin, Am. Miner. 46, 1030 (1961).Google Scholar
  26. 26.
    J. Hälsö, Inorg. Chim. Acta 139, 257 (1987).CrossRefGoogle Scholar
  27. 27.
    C. Mansuy, J. M. Nedelec, C. Dujardin, and R. Ma-hiou, Opt. Mater. 29, 697 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    E. V. Mal’chukova, A. I. Nepomnyashchikh, B. Boizot, T. S. Shamirzaev, and G. Petite, Phys. Solid State 52, 1919 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    G. H. Dieke and H. M. Crosswhite, Appl. Opt. 2, 675 (1963).ADSCrossRefGoogle Scholar
  31. 31.
    J. H. Lin, D. Sheptyakov, Y. X. Wang, and P. Allenspach, Chem. Mater. 16, 2418 (2004).CrossRefGoogle Scholar
  32. 32.
    Y. Jin, Y. Hu, Li Chen, X. Wang, Z. Mu, G. Ju, and Z. Yang, Phys. B (Amsterdam, Neth.) 436, 105 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Z. Shmurak
    • 1
    Email author
  • V. V. Kedrov
    • 1
  • A. P. Kiselev
    • 1
  • T. N. Fursova
    • 1
  • O. G. Rybchenko
    • 1
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations