Physics of the Solid State

, Volume 60, Issue 12, pp 2640–2644 | Cite as

A Possible Liquid–Liquid Transition in a Ga–In Melt Introduced into an Opal Matrix

  • D. Yu. Nefedov
  • E. V. CharnayaEmail author
  • A. V. Uskov
  • D. Yu. Podorozhkin
  • A. O. Antonenko
  • J. Haase
  • Yu. A. Kumzerov


The temperature evolution of the Ga94In6 liquid alloy introduced into an opal matrix has been studied by the NMR method in the temperature range 300–155 K. The temperature dependences of the position and the intensity of the NMR signals from 71Ga, 69Ga, and 115In isotopes have been measured upon cooling and heating of the nanocomposite. The 71Ga NMR line has been observed to be split into two components on cooling below 176 K with a transfer of the intensity to the high-frequency component. The results demonstrate an induced by nanoconfinement shift of the eutectic point in the alloy and the liquid–liquid phase transition in the indium depleted part of the melt.



This work was supported by the Russian Foundation for Basic Research, project no. 16-57-52009. The measurements were carried out in part in the Resource center “Center for diagnostics of functional materials for medicine, pharmacology, and nanoelectronics” at the Research Park of St. Petersburg State University.


  1. 1.
    K. Ito, C. T. Moynihan, and C. A. Angell, Nature (London, U.K.) 398, 492 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Proc. Natl. Acad. Sci. U. S. A. 104, 424 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    H. E. Stanley and O. Mishima, Nature (London, U.K.) 396, 329 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Science (Washington, DC, U. S.) 306, 848 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    I. Saika-Voivod, P. H. Poole, and F. Sciortino, Nature (London, U.K.) 412, 514 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    G. N. Greaves, M. C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q. V. Van, O. Majerus, C. J. Benmore, R. Weber, C. M. Martin, and L. Hennet, Science (Washington, DC, U. S.) 322, 566 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. Cadien, Q. Y. Hu, Y. Meng, Y. Q. Cheng, M. W. Chen, J. F. Shu, H. K. Mao, and H. W. Sheng, Phys. Rev. Lett. 110, 125503 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    P. Debenedetti, S. A. Rice, and A. R. Dinner, Liquid Polymorphism, Ed. by H. E. Stanley (Wiley, Hoboken, NJ, 2013).Google Scholar
  9. 9.
    R. Poloni, S. de Panfilis, A. di Cicco, G. Pratesi, E. Principi, A. Trapananti, and A. Filipponi, Phys. Rev. B 71, 184111 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    L. Bosio, J. Chem. Phys. 68, 1221 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    S. Ayrinhac, M. Gauthier, G. le Marchand, M. Mo-rand, F. Bergame, and F. Decremps, J. Phys.: Condens. Matter 27, 275103 (2015).Google Scholar
  12. 12.
    L. H. Xiong, X. D. Wang, Q. Yu, H. Zhang, F. Zhang, Y. Sun, Q. P. Cao, H. L. Xie, T. Q. Xiao, D. X. Zhang, C. Z. Wang, K. M. Ho, Y. Ren, and J. Z. Jiang, Acta Mater. 128, 304 (2017).CrossRefGoogle Scholar
  13. 13.
    C. L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, Appl. Phys. Lett. 98, 083198 (2011).Google Scholar
  14. 14.
    C. Tien, E. V. Charnaya, W. Wang, Y. A. Kumzerov, and D. Michel, Phys. Rev. B 74, 024116 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. C. Jara, M. F. Michelon, A. Antonelli, and M. de Koning, J. Chem. Phys. 130, 221101 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    R. Li, G. Sun, and L. Xu, J. Chem. Phys. 145, 054506 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    F.-Q. Zu, Metals 5, 395 (2015).CrossRefGoogle Scholar
  18. 18.
    Q. Yu, X. D. Wang, Y. Su, Q. P. Cao, Y. Ren, D. X. Zhang, and J. Z. Jiang, Phys. Rev. B 95, 224203 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    Q. Yu, A. S. Ahmad, K. Ståhl, X. D. Wang, Y. Su, K. Glazyrin, H. P. Liermann, H. Franz, Q. P. Cao, D. X. Zhang, and J. Z. Jiang, Sci. Rep. 7, 1139 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    T. J. Anderson and I. Ansara, J. Phase Equilib. 12, 64 (1991).CrossRefGoogle Scholar
  21. 21.
    A. L. Pirozerskii, E. V. Charnaya, M. K. Lee, L. J. Chang, A. I. Nedbai, Y. A. Kumzerov, A. V. Fokin, M. I. Sa-moilovich, E. L. Lebedeva, and A. S. Bugaev, Acoust. Phys. 63, 306 (2015).Google Scholar
  22. 22.
    E. V. Charnaya, D. Michel, C. Tien, Y. A. Kumzerov, and D. Yaskov, J. Phys.: Condens. Matter 15, 5469 (2003).ADSGoogle Scholar
  23. 23.
    E. V. Charnaya, T. Loeser, D. Michel, C. Tien, D. Yas-kov, and Y. A. Kumzerov, Phys. Rev. Lett. 88, 097602 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    E. V. Charnaya, C. Tien, W. Wang, M. K. Lee, D. Mi-chel, D. Yaskov, S. Y. Sun, and Y. A. Kumzerov, Phys. Rev. B 72, 035406 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. Yu. Nefedov
    • 1
  • E. V. Charnaya
    • 1
    Email author
  • A. V. Uskov
    • 1
  • D. Yu. Podorozhkin
    • 1
  • A. O. Antonenko
    • 1
  • J. Haase
    • 2
  • Yu. A. Kumzerov
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.University of LeipzigLeipzigGermany
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations