Physics of the Solid State

, Volume 60, Issue 12, pp 2507–2516 | Cite as

Behavior of Cobalt and Rare-Earth Subsystems in Frustrated Cobaltites DyBaCo4O7 + x

  • Z. A. KazeiEmail author
  • V. V. Snegirev
  • M. S. Stolyarenko
  • K. S. Pigalskii
  • L. P. Kozeeva
  • M. Yu. Kameneva
  • A. N. Lavrov


Structural, elastic, and magnetic properties of cobaltites DyBaCo4O7 + x produced by various technologies and distinguished by oxygen excess x are experimentally studied. It was found that rhombic distortion of the crystal structure of annealed stoichiometric samples with x = 0 results in frustration removal and elastic property anomalies in the TN region, caused by cobalt subsystem ordering. At an insignificant oxygen nonstoichiometry, no structural distortions occur in quenched samples, and anomalies in elastic characteristics in the TN region smooth and disappear. The studies of DyBaCo4O7 + x magnetic properties show that the rare-earth (RE) subsystem remains paramagnetic and its contribution exceeds the contribution of the Co-subsystem with strong antiferromagnetic couplings by an order of magnitude. The magnetic susceptibility of the stoichiometric sample does not exhibit an appreciable anomaly at TN, since cobalt subsystem ordering is not accompanied by the formation of a noticeable effective field on RE ions.



This study was supported in part by the grant of the Institute of Inorganic Chemistry within the State contract of the Federal Agency for Scientific Organizations of the Russian Federation (subject 45.22 no. 0082-2018-0003, АААА-А18-118012390045-2).


  1. 1.
    L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. B 74, 172401 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    P. Manuel, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. Lett. 103, 037202 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    W. Schweika, M. Valldor, and P. Lemmens, Phys. Rev. Lett. 98, 067201 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. Caignaert, V. Pralong, A. Maignan, and B. Raveau, Solid State Commun. 149, 453 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. Caignaert, V. Pralong, V. Hardy, C. Ritter, and B. Raveau, Phys. Rev. B 81, 094417 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    K. Singh, V. Caignaert, L. C. Chapon, V. Pralong, B. Raveau, and A. Maignan, Phys. Rev. B 86, 024410 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson, L. Wiehl, W. Morgenroth, B. Winkler, M. Avdeev, R. B. Macquart, and C. D. Ling, Phys. Rev. B 79, 064109 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    E. V. Tsipis, J. C. Waerenborgh, M. Avdeev, and V. V. Kharton, J. Solid State Chem. 182, 640 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    L. P. Kozeeva, M. Yu. Kamaneva, A. I. Smolentsev, V. S. Danilovich, and N. V. Podberezskaya, J. Struct. Chem. 49, 1071 (2008).CrossRefGoogle Scholar
  10. 10.
    A. Huq, J. F. Mitchell, H. Zheng, L. C. Chapon, P. G. Radaelli, K. S. Knight, and P. W. Stephens, J. Solid State Chem. 179, 1136 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    D. D. Khalyavin, L. C. Chapon, P. G. Radaelli, H. Zheng, and J. F. Mitchell, Phys. Rev. B 80, 144107 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    D. D. Khalyavin, P. Manuel, B. Ouladdiaf, A. Huq, P. W. Stephens, H. Zheng, J. F. Mitchell, and L. C. Chapon, Phys. Rev. B 83, 094412 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    M. Markina, A. N. Vasiliev, N. Nakayama, T. Mizota, and Y. Yeda, J. Magn. Magn. Mater. 322, 1249 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. R. Hoch, P. L. Kuhns, S. Yuan, T. Besara, J. B. Whalen, T. Siegrist, A. P. Reyes, J. S. Brooks, H. Zheng, and J. F. Mitchell, Phys. Rev. B 87, 064419 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 75, 054707 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M. Valldor, Y. Sanders, and W. Schweika, J. Phys.: Conf. Ser. 145, 012076 (2009).Google Scholar
  17. 17.
    Z. A. Kazei, V. V. Snegirev, L. P. Kozeeva, M. Yu. Ka-meneva, and A. N. Lavrov, J. Exp. Theor. Phys. 126, 650 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    L. P. Kozeeva, M. Yu. Kameneva, A. N. Lavrov, and N. V. Podberezskaya, Inorg. Mater. 49, 626 (2013).CrossRefGoogle Scholar
  19. 19.
    A. V. Alekseev, M. Yu. Kameneva, L. P. Kozeeva, A. N. Lavrov, N. V. Podberezskaya, A. I. Smolentsev, and A. N. Shmakov, Bull. Russ. Acad. Sci.: Phys. 77, 151 (2013).CrossRefGoogle Scholar
  20. 20.
    Z. A. Kazei, V. V. Snegirev, L. P. Kozeeva, and M. Yu. Ka-meneva, J. Exp. Theor. Phys. 122, 136 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    Z. A. Kazei, V. V. Snegirev, A. A. Andreenko, L. P. Ko-zeeva, and M. Y. Kameneva, Solid State Phenom. 233–234, 145 (2015).CrossRefGoogle Scholar
  22. 22.
    S. N. Panja, J. Kumar, S. Dengre, and S. Nair, J. Phys.: Condens. Matter 28, 486001 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Z. A. Kazei
    • 1
    Email author
  • V. V. Snegirev
    • 1
  • M. S. Stolyarenko
    • 1
  • K. S. Pigalskii
    • 2
  • L. P. Kozeeva
    • 3
  • M. Yu. Kameneva
    • 3
  • A. N. Lavrov
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations