Skip to main content
Log in

Preparation of Nanosized Tungsten and Tungsten Oxide Powders

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanopowder tungsten oxide and metallic tungsten are obtained via pyrolysis of ammonium metatungstate. Two methods are used for the synthesis of tungsten oxide: the use of a fibrous matrix and pyrolysis of aerosol particles. Tungsten oxide particles are formed during the pyrolysis in air. Metallic tungsten nanoparticles are obtained via subsequent thermal reduction of tungsten oxide in hydrogen. The structure and morphology of the samples are studied with X-ray diffraction and scanning electron microscopy. Tungsten nanopowders with average sizes from 7 to 30 nm are obtained depending on synthesis temperature. The electrochemical characteristics of electrodes coated with tungsten nanoparticles are studied with cyclic voltammetry, impedance spectroscopy, and galvanostatic charge–discharge methods. An electrode with W nanoparticles exhibited a specific low-frequency capacitance of about 90 F/g due to thin tungsten oxide film on the surface of tungsten nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Dhand, N. Dwivedi, X. J. Loh, A. N. J. Ying, N. K. Varma, R. W. Beuerman, R. Lakshminarayanan, and S. Ramakrishna, RSC Adv. 5, 105003 (2015).

  2. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina, Acta Natur. 6, 35 (2014).

    Google Scholar 

  3. P. T. Moseley, Meas. Sci. Technol. 28, 082001 (2017).

    Article  ADS  Google Scholar 

  4. Yu. S. Gaiduk, O. G. Reutskaya, A. A. Savitskii, and I. A. Taratyn, Prib. Metody Izmer., No. 7, 41 (2016).

  5. V. V. Zuev, R. I. Romanov, V. Yu. Fominski, M. V. Demin, V. V. Grigoriev, and V. N. Nevolin, Semiconductors 49, 1226 (2015).

    Article  ADS  Google Scholar 

  6. B. Urasinska-Wojcik, T. A. Vincent, M. F. Chowdhury, and J. W. Gardner, Sens. Actuators, B 239, 1051 (2017).

    Article  Google Scholar 

  7. M. Cho and I. Park, J. Sensor Sci. Technol. 25, 103 (2016).

    Article  Google Scholar 

  8. Y. Alesanco, A. Vinuales, J. Rodriguez, and R. Tena-Zaera, Materials 11, 414 (2018).

    Article  Google Scholar 

  9. A. Lee-Sie Eh, A. Wei Ming Tan, X. Cheng, Sh. Magdassi, and P. S. Lee, Energy Technol. 6, 33 (2018).

    Article  Google Scholar 

  10. O. Ya. Berezina, D. A. Kirienko, N. P. Markova, and G. B. Stefanovich, Tech. Phys. Lett. 41, 465 (2015).

    Article  ADS  Google Scholar 

  11. V. Yu. Fominskii, S. N. Grigoriev, R. I. Romanov, M. A. Volosova, A. I. Grunin, and G. D. Teterina, Tech. Phys. Lett. 42, 555 (2016).

    Article  ADS  Google Scholar 

  12. Nan Cui, Wenpeng Li, Zengfeng Guo, Xun Xu, and Hongxia Zhao, Catalysts 8, 225 (2018).

    Article  Google Scholar 

  13. P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, Environ. Sci.: Nano 4, 539 (2017).

    Google Scholar 

  14. C. Byrnea, G. Subramanian, and S. C. Pillai, J. Environ. Chem. Eng. 3, 8 (2017).

    Google Scholar 

  15. Zh. Hai, M. Karbalaei Akbari, Z. Wei, Ch. Xue, H. Xu, J. Hu, and S. Zhuiykov, Electrochim. Acta 246, 625 (2017).

    Article  Google Scholar 

  16. Z. Li, Zh. Zhou, G. Yun, K. Shi, X. Lv, and B. Yang, Nanoscale Res. Lett. 8, 473 (2013).

    Article  ADS  Google Scholar 

  17. M. Qiu, P. Sun, L. Shen, K. Wang, Sh. Song, X. Yu, Sh. Tan, Ch. Zhao, and W. Mai, J. Mater. Chem. A 4, 7266 (2016).

    Article  Google Scholar 

  18. O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D. I. Cheong, and Y. M. Kim, Rev. Adv. Mater. Sci. 21, 192 (2009).

    Google Scholar 

  19. T. Acsente, R. F. Negrea, L. C. Nistor, C. Logofatu, E. Matei, R. Birjega, C. Grisolia, and G. Dinescu, Eur. Phys. J. D 69, 161 (2015).

    Article  ADS  Google Scholar 

  20. P. K. Sahoo, S. S. Kalyan Kamal, M. Premkumar, T. Jagadeesh Kumar, B. Sreedhar, A. K. Singh, S. K. Srivastava, and K. Chandrasekhar, Int. J. Refract. Met. Hard Mater. 27, 784 (2009).

    Article  Google Scholar 

  21. A. G. Souza Filho, P. T. C. Freire, O. Pilla, A. P. Ayala, J. Mendes Filho, F. E. A. Melo, V. N. Freire, and V. Lemos, Phys. Rev. B 62, 3699 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Committee of Science of the Kazakhstan Ministry of Education and Science (project no. IRN AR05130100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. A. Abdullin.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullin, K.A., Azatkaliev, A.A., Gabdullin, M.T. et al. Preparation of Nanosized Tungsten and Tungsten Oxide Powders. Phys. Solid State 60, 2634–2639 (2018). https://doi.org/10.1134/S1063783419010025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419010025

Navigation