Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2634–2639 | Cite as

Preparation of Nanosized Tungsten and Tungsten Oxide Powders

  • Kh. A. AbdullinEmail author
  • A. A. Azatkaliev
  • M. T. Gabdullin
  • Zh. K. Kalkozova
  • B. N. Mukashev
  • A. S. Serikkanov
LOW-DIMENSIONAL SYSTEMS
  • 1 Downloads

Abstract

Nanopowder tungsten oxide and metallic tungsten are obtained via pyrolysis of ammonium metatungstate. Two methods are used for the synthesis of tungsten oxide: the use of a fibrous matrix and pyrolysis of aerosol particles. Tungsten oxide particles are formed during the pyrolysis in air. Metallic tungsten nanoparticles are obtained via subsequent thermal reduction of tungsten oxide in hydrogen. The structure and morphology of the samples are studied with X-ray diffraction and scanning electron microscopy. Tungsten nanopowders with average sizes from 7 to 30 nm are obtained depending on synthesis temperature. The electrochemical characteristics of electrodes coated with tungsten nanoparticles are studied with cyclic voltammetry, impedance spectroscopy, and galvanostatic charge–discharge methods. An electrode with W nanoparticles exhibited a specific low-frequency capacitance of about 90 F/g due to thin tungsten oxide film on the surface of tungsten nanoparticles.

Notes

ACKNOWLEDGMENTS

This work was supported by the Committee of Science of the Kazakhstan Ministry of Education and Science (project no. IRN AR05130100).

REFERENCES

  1. 1.
    C. Dhand, N. Dwivedi, X. J. Loh, A. N. J. Ying, N. K. Varma, R. W. Beuerman, R. Lakshminarayanan, and S. Ramakrishna, RSC Adv. 5, 105003 (2015).Google Scholar
  2. 2.
    V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina, Acta Natur. 6, 35 (2014).Google Scholar
  3. 3.
    P. T. Moseley, Meas. Sci. Technol. 28, 082001 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. S. Gaiduk, O. G. Reutskaya, A. A. Savitskii, and I. A. Taratyn, Prib. Metody Izmer., No. 7, 41 (2016).Google Scholar
  5. 5.
    V. V. Zuev, R. I. Romanov, V. Yu. Fominski, M. V. Demin, V. V. Grigoriev, and V. N. Nevolin, Semiconductors 49, 1226 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    B. Urasinska-Wojcik, T. A. Vincent, M. F. Chowdhury, and J. W. Gardner, Sens. Actuators, B 239, 1051 (2017).CrossRefGoogle Scholar
  7. 7.
    M. Cho and I. Park, J. Sensor Sci. Technol. 25, 103 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Alesanco, A. Vinuales, J. Rodriguez, and R. Tena-Zaera, Materials 11, 414 (2018).CrossRefGoogle Scholar
  9. 9.
    A. Lee-Sie Eh, A. Wei Ming Tan, X. Cheng, Sh. Magdassi, and P. S. Lee, Energy Technol. 6, 33 (2018).CrossRefGoogle Scholar
  10. 10.
    O. Ya. Berezina, D. A. Kirienko, N. P. Markova, and G. B. Stefanovich, Tech. Phys. Lett. 41, 465 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. Yu. Fominskii, S. N. Grigoriev, R. I. Romanov, M. A. Volosova, A. I. Grunin, and G. D. Teterina, Tech. Phys. Lett. 42, 555 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    Nan Cui, Wenpeng Li, Zengfeng Guo, Xun Xu, and Hongxia Zhao, Catalysts 8, 225 (2018).CrossRefGoogle Scholar
  13. 13.
    P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, Environ. Sci.: Nano 4, 539 (2017).Google Scholar
  14. 14.
    C. Byrnea, G. Subramanian, and S. C. Pillai, J. Environ. Chem. Eng. 3, 8 (2017).Google Scholar
  15. 15.
    Zh. Hai, M. Karbalaei Akbari, Z. Wei, Ch. Xue, H. Xu, J. Hu, and S. Zhuiykov, Electrochim. Acta 246, 625 (2017).CrossRefGoogle Scholar
  16. 16.
    Z. Li, Zh. Zhou, G. Yun, K. Shi, X. Lv, and B. Yang, Nanoscale Res. Lett. 8, 473 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    M. Qiu, P. Sun, L. Shen, K. Wang, Sh. Song, X. Yu, Sh. Tan, Ch. Zhao, and W. Mai, J. Mater. Chem. A 4, 7266 (2016).CrossRefGoogle Scholar
  18. 18.
    O. V. Tolochko, O. G. Klimova, S. S. Ordanian, D. I. Cheong, and Y. M. Kim, Rev. Adv. Mater. Sci. 21, 192 (2009).Google Scholar
  19. 19.
    T. Acsente, R. F. Negrea, L. C. Nistor, C. Logofatu, E. Matei, R. Birjega, C. Grisolia, and G. Dinescu, Eur. Phys. J. D 69, 161 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    P. K. Sahoo, S. S. Kalyan Kamal, M. Premkumar, T. Jagadeesh Kumar, B. Sreedhar, A. K. Singh, S. K. Srivastava, and K. Chandrasekhar, Int. J. Refract. Met. Hard Mater. 27, 784 (2009).CrossRefGoogle Scholar
  21. 21.
    A. G. Souza Filho, P. T. C. Freire, O. Pilla, A. P. Ayala, J. Mendes Filho, F. E. A. Melo, V. N. Freire, and V. Lemos, Phys. Rev. B 62, 3699 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Kh. A. Abdullin
    • 1
    Email author
  • A. A. Azatkaliev
    • 1
  • M. T. Gabdullin
    • 2
  • Zh. K. Kalkozova
    • 1
  • B. N. Mukashev
    • 3
  • A. S. Serikkanov
    • 3
  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Kazakh-British Technical UniversityAlmatyKazakhstan
  3. 3.Institute of Physics and TechnologyAlmatyKazakhstan

Personalised recommendations