Physics of the Solid State

, Volume 60, Issue 12, pp 2649–2655 | Cite as

Structural and Thermoelectric Properties of Optically Transparent Thin Films Based on Single-Walled Carbon Nanotubes

  • I. A. TambasovEmail author
  • A. S. Voronin
  • N. P. Evsevskaya
  • M. N. Volochaev
  • Yu. V. Fadeev
  • A. S. Krylov
  • A. S. Aleksandrovskii
  • A. V. Luk’yanenko
  • S. R. Abelyan
  • E. V. Tambasova


Thin films have been produced via a spray method from commercially available single-walled carbon nanotubes (SWCNTs). A SWCNT film thickness has ranged from ~10 to ~80 nm. The SWCNT diameter has accepted values of 1.6–1.8 nm. The existence of SWCNTs longer than 10 μm is established. The optimal thickness of a SWCNT thin film is found to be ~15 nm at which the transmittance exceeds 85%. The specific resistance of SWCNT thin films goes from ~1.5 × 10–3 to ~3 × 10–3 Ohm cm at room temperature. The pioneering study of the temperature dependences of the Seebeck coefficient and surface resistance is performed for this type of SWCNT. A surface resistance is found to increase with rising temperature. Furthermore, the Seebeck coefficient of SWCNT thin films weakly depends on temperature. Its value for all samples is evaluated to be ~40 μV/K. According to the sign of the Seebeck coefficient, thin films exhibit hole-type conductivity. Moreover, the power factor of a 15-nm thin SWCNT-film decreases with a temperature increase to 140◦C from the value of approximately ~120 to ~60 μW m–1 K–2. A further rise in temperature has led to a gain in the power factor.



This work was supported by the Russian Science Foundation (project no. 17-72-10079).


  1. 1.
    N. Toshima, Synth. Met. 225, 3 (2017).Google Scholar
  2. 2.
    G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).Google Scholar
  3. 3.
    X. Mu, H. Y. Zhou, D. Q. He, W. Y. Zhao, P. Wei, W. T. Zhu, X. L. Nie, H. J. Liu, and Q. J. Zhang, Nano Energy 33, 55 (2017).Google Scholar
  4. 4.
    D. Madan, Z. Q. Wang, P. K. Wright, and J. W. Evans, Appl Energ. 156, 587 (2015).Google Scholar
  5. 5.
    Y. N. Chen, Y. Zhao, and Z. Q. Liang, Energ Environ. Sci. 8, 401 (2015).Google Scholar
  6. 6.
    J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, Npg Asia Mater. 2, 152 (2010).Google Scholar
  7. 7.
    J. He and T. M. Tritt, Science (Washington, DC, U. S.) 357, 1369 (2017).Google Scholar
  8. 8.
    X. L. Su, P. Wei, H. Li, W. Liu, Y. G. Yan, P. Li, C. Q. Su, C. J. Xie, W. Y. Zhao, P. C. Zhai, Q. J. Zhang, X. F. Tang, and C. Uher, Adv. Mater. 29, 1602013 (2017).Google Scholar
  9. 9.
    S. Ortega, M. Ibanez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, and A. Cabot, Chem. Soc. Rev. 46, 3510 (2017).Google Scholar
  10. 10.
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).Google Scholar
  11. 11.
    K. Yanagi, S. Kanda, Y. Oshima, Y. Kitamura, H. Ka-wai, T. Yamamoto, T. Takenobu, Y. Nakai, and Y. Maniwa, Nano Lett. 14, 6437 (2014).Google Scholar
  12. 12.
    Y. Nakai, K. Honda, K. Yanagi, H. Kataura, T. Kato, T. Yamamoto, and Y. Maniwa, Appl. Phys. Express 7, 025103 (2014).Google Scholar
  13. 13.
    A. P. Tsapenko, A. E. Goldt, E. Shulga, Z. I. Popov, K. I. Maslakov, A. S. Anisimov, P. B. Sorokin, and A. G. Nasibulin, Carbon 130, 448 (2018).Google Scholar
  14. 14.
    C. Yang, D. Souchay, M. Kneiss, M. Bogner, M. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y. Q. Fu, and M. Grundmann, Nat. Commun. 8, 16076 (2017).Google Scholar
  15. 15.
    I. A. Tambasov, A. S. Tarasov, M. N. Volochaev, M. V. Rautskii, V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, and E. V. Tambasova, Phys. E (Amsterdam, Neth.) 84, 162 (2016).Google Scholar
  16. 16.
    V. G. Myagkov, L. E. Bykova, A. A. Matsynin, M. N. Volochaev, V. S. Zhigalov, I. A. Tambasov, Y. L. Mikhlin, D. A. Velikanov, and G. N. Bondarenko, J. Solid State Chem. 246, 379 (2017).Google Scholar
  17. 17.
    M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Sou-za, and R. Saito, Carbon 40, 2043 (2002).Google Scholar
  18. 18.
    T. Belin and F. Epron, Mater. Sci. Eng. B 119, 105 (2005).Google Scholar
  19. 19.
    M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010).Google Scholar
  20. 20.
    M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).Google Scholar
  21. 21.
    L. Henrard, V. N. Popov, and A. Rubio, Phys. Rev. B 64, 205403 (2001).Google Scholar
  22. 22.
    J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Phys. Rev. B 72, 205438 (2005).Google Scholar
  23. 23.
    A. Chortos, I. Pochorovski, P. Lin, G. Pitner, X. Z. Yan, T. Z. Gao, J. W. F. To, T. Lei, J. W. Will, H. S. P. Wong, and Z. N. Bao, ACS Nano 11, 5660 (2017).Google Scholar
  24. 24.
    V. M. Irurzun, M. P. Ruiz, and D. E. Resasco, Carbon 48, 2873 (2010).Google Scholar
  25. 25.
    A. A. Ivanenko, I. A. Tambasov, A. A. Pshenichnaia, and N. P. Shestakov, Opt. Mater. 73, 388 (2017).Google Scholar
  26. 26.
    B. B. Parekh, G. Fanchini, G. Eda, and M. Chhowalla, Appl. Phys. Lett. 90, 121913 (2007).Google Scholar
  27. 27.
    D. Kim, H. C. Lee, J. Y. Woo, and C. S. Han, J. Phys. Chem. C 114, 5817 (2010).Google Scholar
  28. 28.
    P. S. Na, H. J. Kim, H. M. So, K. J. Kong, H. J. Chang, B. H. Ryu, Y. M. Choi, J. O. Lee, B. K. Kim, J. J. Kim, and J. H. Kim, Appl. Phys. Lett. 87, 093101 (2005).Google Scholar
  29. 29.
    P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science (Washington, DC, U. S.) 287, 1801 (2000).Google Scholar
  30. 30.
    A. Zahab, L. Spina, P. Poncharal, and C. Marliere, Phys. Rev. B 62, 10000 (2000).Google Scholar
  31. 31.
    J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grun-lan, Adv. Mater. 30, 1704386 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Tambasov
    • 1
    Email author
  • A. S. Voronin
    • 2
  • N. P. Evsevskaya
    • 3
  • M. N. Volochaev
    • 1
    • 4
  • Yu. V. Fadeev
    • 5
  • A. S. Krylov
    • 1
  • A. S. Aleksandrovskii
    • 1
    • 5
  • A. V. Luk’yanenko
    • 1
    • 5
  • S. R. Abelyan
    • 1
  • E. V. Tambasova
    • 4
  1. 1.Institute of Physics, Siberian Branch, Russian Academy of SciencesKransoyarskRussia
  2. 2.Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of SciencesKransoyarskRussia
  3. 3.Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of SciencesKransoyarskRussia
  4. 4.Siberian State University of Sciences and TechnologiesKrasnoyarskRussia
  5. 5.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations