Physics of the Solid State

, Volume 60, Issue 12, pp 2565–2570 | Cite as

Temperature Quenching and Fluorescence Depolarization of Carbon Nanodots Obtained via Paraffin Pyrolysis

  • A. N. StarukhinEmail author
  • D. K. Nelson
  • D. A. Kurdyukov
  • D. A. Eurov
  • V. G. Golubev


A temperature effect on fluorescence intensity and polarization of a colloidal system of carbon nanodots in glycerol under linearly polarized pumping conditions is studied. Nanodots are obtained via pyrolysis of paraffin in nanopores of a mesoporous silica. An increase in temperature leads to quenching of nanodots fluorescence, and activation energy of the quenching process is assessed. An experimental relationship between the linear fluorescence polarization and temperature is described by the Levshin–Perrin equation, which takes into account the rotational diffusion of luminescent particles (fluorophores) in a liquid matrix. The size of fluorophores is noticeably smaller than that of carbon nanodots according to the Levshin–Perrin model. A difference between the dimensions of the fluorophore and the nanodot indicates that the small atomic groups responsible for luminescence of the nanodot possess high segmental mobility.



This work was partially supported by the Russian Foundation for Basic Research (project no. 16-03-00472).


  1. 1.
    M. Sharon and M. Sharon, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Hoboken, 2015).CrossRefzbMATHGoogle Scholar
  2. 2.
    Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.-Y. Xie, J. Am. Chem. Soc. 128, 7756 (2006).CrossRefGoogle Scholar
  3. 3.
    A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, and E. P. Gia, Chem. Mater. 20, 4539 (2008).CrossRefGoogle Scholar
  4. 4.
    Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014).CrossRefGoogle Scholar
  5. 5.
    M. A. Jhonsi and S. Thulasi, Chem. Phys. Lett. 661, 179 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    X. Wang, L. Cao, S.-T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, and Y.-P. Sun, Angew. Chem. Int. Ed. 49, 5310 (2010).CrossRefGoogle Scholar
  7. 7.
    H. Peng and J. Travas-Sejdic, Chem. Mater. 21, 5563 (2009).CrossRefGoogle Scholar
  8. 8.
    R. Jelinek, Carbon Quantum Dots (Springer, Switzerland, 2017).CrossRefGoogle Scholar
  9. 9.
    S.-T. Yang, X. Wang, H. Wang, F. Lu, P. G. Luo, L. Cao, M. J. Meziani, J.-H. Liu, Y. Liu, M. Chen, Y. Huang, and Y.-P. Sun, J. Phys. Chem. C 113, 18110 (2009).CrossRefGoogle Scholar
  10. 10.
    F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, and S. Yang, Nano Today 11, 565 (2016).CrossRefGoogle Scholar
  11. 11.
    P. P. Feofilov, The Physical Basic of Polarized Emission (Fizmatgiz, Moscow, 1959; Consultants Bureau, New York, 1961).Google Scholar
  12. 12.
    D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).Google Scholar
  13. 13.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2006).CrossRefGoogle Scholar
  14. 14.
    D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    J. Zong, Y. Zhu, X. Yang, J. Shen, and C. Li, Chem. Commun. 47, 764 (2011).CrossRefGoogle Scholar
  16. 16.
    S. N. Jasperson and S. E. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 2010).Google Scholar
  18. 18.
    P. Yu, X. Wen, Y.-R. Toh, and J. Tang, J. Phys. Chem. C 116, 25552 (2012).CrossRefGoogle Scholar
  19. 19.
    D. A. Fridrikhsberg, Course of Colloid Chemistry (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  20. 20.
    Physical Properties of Glycerine and Its Solutions (Glycerine Producers Assoc., New York, 1963).Google Scholar
  21. 21.
    A. Sharma, T. Gadly, A. Gupta, A. Ballal, S. K. Ghosh, and M. Kumbhakar, J. Phys. Chem. Lett. 7, 3695 (2016).CrossRefGoogle Scholar
  22. 22.
    M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, and A. P. Demchenko, Phys. Chem. Chem. Phys. 16, 16075 (2014).CrossRefGoogle Scholar
  23. 23.
    D. K. Nelson, B. S. Razbirin, A. N. Starukhin, D. A. Eurov, D. A. Kurdyukov, E. Yu. Stovpiaga, and V. G. Golubev, Opt. Mater. 59, 28 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    A. N. Starukhin, D. K. Nelson, D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, and V. G. Golubev, JETP Lett. 107, 223 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Unruh, G. Gokulrangan, G. H. Lushington, C. K. Johnson, and G. S. Wilson, Biophys. J. 88, 3455 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Starukhin
    • 1
    Email author
  • D. K. Nelson
    • 1
  • D. A. Kurdyukov
    • 1
  • D. A. Eurov
    • 1
  • V. G. Golubev
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations