Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2436–2439 | Cite as

Haven Correlation Parameter for Diffusion of Fluorine in Superionic Conductors La1 – ySryF3 – y

  • N. I. SorokinEmail author
DIELECTRICS
  • 3 Downloads

Abstract

The processes of electric charge transfer (conductivity) and mass transfer (diffusion) in La1 ‒ ySryF3 – y superionic conductors are determined by mobile fluorine ions. The fluorine random-diffusion coefficients Dσ have been calculated from experimental data on the ionic conductivity σdc for La1 ‒ ySryF3 – y single crystals at the SrF2 dopant contents of 1, 3, 5, 7.5, 10, and 15 mol %. A maximum in the region of 3–5 mol % SrF2 is observed in the dependence Dσ(y). The value of the Haven correlation parameter Hr = DNMR/Dσ (DNMR is the fluorine diffusion coefficient measured by NMR on 19F nuclei) is determined; it characterizes the ion transport mechanism in La1 – ySryF3 – y crystals. The Hr values are 0.75 ± 0.15, 0.45 ± 0.15, and 0.65 ± 0.15 at 400–800 K for 1, 3, and 15–16 mol % SrF2, respectively. Superionic conductor La0.97Sr0.03F2.97 with maximum σdc and Dσ values has a minimum Haven parameter. The obtained Hr values indicate that fluorine diffusion in superionic conductors La1 – ySryF3 – y goes not according to the vacancy mechanism involving single vacancies but by cooperative motion of F conduction ions.

Notes

ACKNOWLEDGMENTS

This study was supported by the Federal Agency for Scientific Organizations (contract no. 007-ГЗ/Ч3363/26).

REFERENCES

  1. 1.
    K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786 (1956).CrossRefGoogle Scholar
  2. 2.
    Physics of Electrolytes, Ed. by J. Hladik (Academic, New York, 1972).Google Scholar
  3. 3.
    R. E. Gordon and J. H. Strange, J. Phys. C 11, 3213 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    G. A. Evangelakis and V. Pontikis, Phys. Rev. B 43, 3180 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Sinitsyn, O. Lips, A. F. Privalov, and I. V. Murin, J. Phys. Chem. Solids 64, 1201 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52, 842 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    B. P. Sobolev and N. I. Sorokin, Crystallogr. Rep. 59, 807 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    B. P. Sobolev, N. I. Sorokin, and N. B. Bolotina, Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016).Google Scholar
  9. 9.
    O. Greis and M. S. R. Cader, Thermochim, Acta 87, 145 (1985).CrossRefGoogle Scholar
  10. 10.
    B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39, 17 (1981).CrossRefGoogle Scholar
  11. 11.
    E. A. Krivandina, Z. I. Zhmurova, O. I. Lyamina, A. A. Bystrova, L. P. Otroshchenko, and B. P. Sobolev, Crystallogr. Rep. 41, 912 (1996).ADSGoogle Scholar
  12. 12.
    N. B. Bolotina, T. S. Chernaya, A. I. Kalyukanov, I. A. Verin, N. I. Sorokin, L. E. Fykin, N. N. Isakova, and B. P. Sobolev, Crystallogr. Rep. 60, 346 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 39, 810 (1994).ADSGoogle Scholar
  14. 14.
    N. I. Sorokin and B. P. Sobolev, Russ. J. Electrochem. 43, 398 (2007).CrossRefGoogle Scholar
  15. 15.
    N. I. Sorokin, Russ. J. Phys. Chem. A 76, 319 (2002).Google Scholar
  16. 16.
    A. K. Ivanov-Shits and I. V. Murin, Solid State Ionics (SPb. Gos. Univ., St. Petersburg, 2000), Vol. 1 [in Russian].Google Scholar
  17. 17.
    F. Fujara, D. Kruk, O. Lips, A. F. Privalov, V. Sinitsyn, and H. Stork, Solid State Ionics 179, 2350 (2008).CrossRefGoogle Scholar
  18. 18.
    N. I. Sorokin and B. P. Sobolev, Phys. Solid State 50, 416 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    B. P. Sobolev, V. B Aleksandrov, P. P. Fedorov, K. B. Seiranyan, and N. L. Tkachenko, Sov. Phys. Crystallogr. 21, 49 (1976).Google Scholar
  20. 20.
    I. V. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Prikl. Khim. 53, 1474 (1980).Google Scholar
  21. 21.
    A. K. Ivanov-Shits, Crystallogr. Rep. 52, 129 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498 (1958).CrossRefGoogle Scholar
  23. 23.
    Yu. Ya. Gurevich and Yu. I. Kharkats, Superionics Conductors (Nauka, Moscow, 1992) [in Russian].Google Scholar
  24. 24.
    R. A. Evarestov and I. V. Murin, Sov. Phys. Solid State 30, 168 (1988).Google Scholar
  25. 25.
    A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 72, 1277 (1968).CrossRefGoogle Scholar
  26. 26.
    R. I. Efremova and E. V. Matizen, Izv. SO AN SSSR, Ser. Khim. 2, 3 (1970).Google Scholar
  27. 27.
    W. Shroter and J. Nolting, J. Phys. 41, 6 (1980).Google Scholar
  28. 28.
    J. R. Manning, Diffusion Kinetics for Atoms in Crystals (Van Nostrand, New York, 1968).CrossRefGoogle Scholar
  29. 29.
    M. G. Izosimova, A. I. Livshits, V. M. Buznik, P. P. Fe-dorov, E. A. Krivandina, and B. P. Sobolev, Sov. Phys. Solid State 28, 1482 (1986).Google Scholar
  30. 30.
    D. Kruk, O. Lips, P. Gumann, A. F. Privalov, and F. Fujara, J. Phys.: Condens. Matter 18, 1725 (2006).ADSGoogle Scholar
  31. 31.
    O. Lips, D. Kruk, A. F. Privalov, and F. Fujara, Solid State Nucl. Magn. Res. 31, 141 (2007).CrossRefGoogle Scholar
  32. 32.
    A. K. Ivanov-Shits and I. V. Murin, Solid State Ionics (SPb. Gos. Univ., St. Petersburg, 2010), Vol. 2 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations