Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2546–2550 | Cite as

Bulk Modulus of Coarse-Crystalline and Nanocrystalline Silver Sulfides

  • S. I. SadovnikovEmail author
MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • 1 Downloads

Abstract

The change in the bulk modulus of coarse-crystalline and nanocrystalline silver sulfides is determined in the temperature range 300–960 K using the experimental data on the temperature dependences of the heat capacity and the thermal expansion coefficients of these materials. The bulk modulus of the nanocrystalline silver sulfide is found to be lower in magnitude than modulus B of the coarse-crystalline silver sulfide in this temperature range.

Notes

REFERENCES

  1. 1.
    A. Tang, Yu. Wang, H. Ye H, C. Zhou, C. Yang, X. Li, H. Peng, F. Zhang, Y. Hou, and F. Teng, Nanotechnology 24, 355602 (2013).CrossRefGoogle Scholar
  2. 2.
    C. Cui, X. Li, J. Liu, Y. Hou, Y. Zhao, and G. Zhong, Nanoscale Res. Lett. 10, 431 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).CrossRefGoogle Scholar
  4. 4.
    K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature (London, U.K.) 433, 47 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizu-no, H. Kawaura, T. Hasegawa, K. Terabe, T. Naka-yama, and M. Aono, EEE J. Solid State Circuits 40, 168 (2005).Google Scholar
  6. 6.
    A. I. Gusev and S. I. Sadovnikov, Mater. Lett. 188, 351 (2017).CrossRefGoogle Scholar
  7. 7.
    A. I. Gusev, S. I. Sadovnikov, A. V. Chukin, and A. A. Rempel, Phys. Solid State 58, 251 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, and A. A. Rempel, Phys. Chem. Chem. Phys. 18, 4617 (2016).CrossRefGoogle Scholar
  9. 9.
    S. I. Sadovnikov and A. I. Gusev, Phys. Solid State 59, 1887 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    S. I. Sadovnikov and A. I. Gusev, J. Therm. Anal. Calorim. 130, 1155 (2018).CrossRefGoogle Scholar
  11. 11.
    A. I. Gusev and S. I. Sadovnikov, Thermochim. Acta 660, 1 (2018).CrossRefGoogle Scholar
  12. 12.
    Landolt-Börnstein, Group III Condensed Matter, Numerical Data and Functional Relationships in Science and Technology, Vol. 41C: Semiconductors. Non-Tetrahedrally Bonded Elements and Binary Compounds I, Ed. O. Madelung, U. Rössler, and M. Schulz (Springer, Berlin, 1998).Google Scholar
  13. 13.
    https://materialsproject.org/materials/mp-610517/.Google Scholar
  14. 14.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstruct. 83, 35 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).CrossRefGoogle Scholar
  16. 16.
    S. I. Sadovnikov and A. I. Gusev, Eur. J. Inorg. Chem. 2016, 4944 (2016).CrossRefGoogle Scholar
  17. 17.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cornell Univ., New York, 1976).zbMATHGoogle Scholar
  18. 18.
    T. Blanton, S. Misture, N. Dontula, and S. Zdzies-zynski, Powd. Diffract. 26, 110 (2011).ADSGoogle Scholar
  19. 19.
    G. D. Holah, J. S. Webb, and H. Montgomery, J. Phys. 7, 3875 (1974).ADSGoogle Scholar
  20. 20.
    D. J. Lockwood and H. Montgomery, J. Phys. C 8, 3241 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    M. H. Grimsditch and G. D. Holah, Phys. Rev. B 12, 4377 (1975).ADSCrossRefGoogle Scholar
  22. 22.
    C. Carlone, D. Olego, A. Jayaraman, and M. Cardona, Phys. Rev. B 22, 3877 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    Landolt-Börnstein, Group III Condensed Matter, Numerical Data and Functional Relationships in Science and Technology, Vol. 41E: Ternary Compounds, Organic Semiconductors, Ed. by O. Madelung, U. Rössler, and M. Schulz (Springer, Berlin, 2000).Google Scholar
  24. 24.
    P. Kistaiah, C. V. Reddy, V. P. Kumar, P. V. Reddy, and S. Venkanna, J. Alloys Compd. 397, 192 (2005).CrossRefGoogle Scholar
  25. 25.
    V. D. Farajov, Z. A. Iskenderzade, E. K. Kasumova, and E. M. Kurbanov, Inorg. Mater. 41, 911 (2005).CrossRefGoogle Scholar
  26. 26.
    V. N Belomestnykh, and E. P. Tesleva, Izv. Tomsk. Politekh. Univ. 306, 8 (2003).Google Scholar
  27. 27.
    D. S. Sanditov and V. N. Belomestnykh, Tech. Phys. 56, 1619 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Gaillac, P. Pullumbi, and F.-X. Coudert, J. Phys.: Condens. Matter 28, 275201 (2016).Google Scholar
  29. 29.
    A. Jain, S. Ping Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    http://progs.coudert.name/elate/mp?query=mp-610517.Google Scholar
  31. 31.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations