Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2486–2490 | Cite as

Magnetocrystalline Anisotropy of (PrDy)(FeCo)B Sintered Magnets

  • E. I. Kunitsyna
  • V. P. Piskorskii
  • D. V. Korolev
  • R. A. Valeev
  • V. V. Kucheryaev
  • R. B. MorgunovEmail author
MAGNETISM

Abstract

The magnetocrystalline anisotropy of uniaxial (PrDy)(FeCo)B rare-earth magnets is determined using the Akulov model and studied in the 2–300 K temperature. The (PrDy)(FeCo)B samples demonstrate the power dependence of anisotropy constant K(T) on saturation magnetization MS(T) in the temperature range 2–300 K with exponents m = 1.7–2.1, according to the empiric Callen–Callen rule. A deviation of power dependence K(\(M_{S}^{m}\)) is observed in the samples with the Gd impurity. Possible causes of the deviation from the Callen–Callen rule and variations of exponent m are discussed.

Notes

REFERENCES

  1. 1.
    M. Sagawa, S. Hirosawa, K. Tokuhara, H. Yamamoto, S. Fujimura, Y. Tsubokawa, and R. Shimizu, J. Appl. Phys. 61, 3559 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    K. Kumar, J. Appl. Phys. 63, R13 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    R. Skomski and J. M. D. Coey, Permanent Magnetism (Inst. Phys., Bristol, 1999).Google Scholar
  5. 5.
    R. Skomski, J. Appl. Phys. 83, 6724 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    R. Skomski, A. Kashyap, and D. J. Sellmyer, IEEE Trans. Magn. 39, 2917 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gy-orffy, L. Szunyogh, B. Ginatempo, and E. Bruno, Phys. Rev. Lett. 93, 257204 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    O. N. Mryasov, U. Nowak, K. Guslienko, and R. Chan-trell, Europhys. Lett. 69, 805 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    R. Skomski, O. N. Mryasov, J. Zhou, and D. J. Sellmyer, J. Appl. Phys. 99, 08E916 (2006).Google Scholar
  10. 10.
    N. Kobayashi, K. Hyodo, and A. Sakuma, Jpn. J. Appl. Phys. 55, 100306 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    N. H. Hai, N. M. Dempsey, and D. Givord, IEEE Trans. Magn. 39, 2914 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    R. Skomski, A. Kashyap, and J. Zhou, Scr. Mater. 53, 389 (2005).CrossRefGoogle Scholar
  13. 13.
    Y. Toga, M. Matsumoto, S. Miyashita, H. Akai, S. Doi, T. Miyake, and A. Sakuma, Phys. Rev. B 94, 174433 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    D. Miura, R. Sasaki, and A. Sakuma, Appl. Phys. Express 8, 113003 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    K. J. Strnat, Proc. IEEE 78, 923 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    R. Skomski, P. Manchanda, P. Kumar, B. Balamurugan, A. Kashyap, and D. J. Sellmyer, IEEE Trans. Magn. 49, 3215 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    S. D. Bader, Rev. Mod. Phys. 78, 1 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    B. K. Chatterjee, C. K. Ghosh, and K. K. Chattopadhyay, J. Appl. Phys. 116, 153904 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    R. Sasaki, D. Miura, and A. Sakuma, Appl. Phys. Express 8, 043004 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    N. S. Akulov, Z. Phys. 69, 822 (1931).ADSCrossRefGoogle Scholar
  21. 21.
    H. B. Callen and E. Callen, J. Phys. Chem. Solids 27, 1271 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    R. Skomski and D. J. Sellmyer, J. Rare Earths 27, 675 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. I. Kunitsyna
    • 1
  • V. P. Piskorskii
    • 2
  • D. V. Korolev
    • 2
  • R. A. Valeev
    • 2
  • V. V. Kucheryaev
    • 2
  • R. B. Morgunov
    • 1
    • 2
    Email author
  1. 1.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.All-Russia Institute of Aviation Materials (VIAM)MoscowRussia

Personalised recommendations