Physics of the Solid State

, Volume 60, Issue 12, pp 2608–2615 | Cite as

Mössbauer Studies of Composites Hydroxyapatite/Ferroxides

  • A. S. KamzinEmail author
  • N. Wakiya


Magnetic composite (MC) particles consisting of finding hydroxyapatite and iron oxides (HAp/FeOxid), synthesized at both pyrolysis temperatures during MC synthesis, i.e., 800, 900, and 1000°C and at the various ferroxide concentrations in the HАp : FeOxid composite, i.e., 1 : 3, 1 : 2, and 1 : 1 (at a pyrolysis temperature of 1000°C). It is found that the HAp/FeOxid MCs are formed by the hydroxyapatite matrix providing biological compatibility of the MC containing iron oxide particles. Mössbauer studies show that maghemite (γ-Fe2O3), magnetite (Fe3O4), ε-Fe2O3, and akaganeite (β-FeOOH) phases are simultaneously observed in synthesized HAp/FeOxid MCs. The content of ε-Fe2O3 component having giant magnetic anisotropy is to ~40% of iron oxides (FeOxid) in HAp/FeOxid MCs, which makes obtained MCs very promising for various applications, including biomedical ones.



  1. 1.
    K. Hayashi, Y. Sato, W. Sakamoto, and T. Yogo, ACS Biomater. Sci. Eng. 3, 95 (2017).CrossRefGoogle Scholar
  2. 2.
    Z. Ling-Yun, L. Jia-Yi, O. Wei-Wei, L. Dan-Ye, L. Li, L. Li-Ya, and T. Jin-Tian, Chin. Phys. B 22, 108104 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery, Ed. by P. Guardia, A. Rie-dinger, H. Kakwere, F. Gazeau, and T. Pellegrino, Pt. 6 of Bio- and Bioinspired Nanomaterials, Ed. by D. Ruiz-Molina, F. Novio, and C. Roscini (Wiley-VCH, Weinheim, 2015).Google Scholar
  4. 4.
    K. Chatterjee, S. Sarkar, K. J. Rao, and S. Paria, Adv. Colloid Interface Sci. 209, 8 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Kawashita, M. Tanaka, T. Kokubo, Y. Inoue, T. Yao, S. Hamada, and T. Shinjo, Biomater. 26, 2231 (2005).CrossRefGoogle Scholar
  6. 6.
    D.-L. Zhao, X.-W. Zeng, Q.-S. Xia, and J.-T. Tang, J. Alloys Compd. 469, 215 (2009).CrossRefGoogle Scholar
  7. 7.
    N. B. Tkachenko and A. C. Kamzin, Phys. Solid State 58, 763 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    N. V. Tkachenko, L. P. Ol’khovik, and A. S. Kamzin, Phys. Solid State 53, 1588 (2011).CrossRefGoogle Scholar
  9. 9.
    M. V. Tkachenko, L. P. Ol’khovik, A. S. Kamzin, and S. Keshri, Tech. Phys. Lett. 40, 4 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Tkachenko, A. S. Kamzin, L. P. Ol’khovik, T. M. Tkachenko, and S. Keshri, Solid State Phenom. 215, 480 (2014).CrossRefGoogle Scholar
  11. 11.
    K. Kelm and W. Mader, Z. Anorg. Allg. Chem. 631, 2383 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Lancok, M. Miglierini, and Ya. Kohout, Phys. Met. Metallogr. 109, 524 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    M. Kurmoo, J. L. Rehspringer, A. Hutlova, C. Orle’ans, S. Vilminot, C. Estournes, and D. Niznansky, Chem. Mater. 17, 1106 (2005).CrossRefGoogle Scholar
  14. 14.
    S. Sakurai, J. Jin, K. Hashimoto, and S. Ohkoshi, J. Phys. Soc. Jpn. 74, 1946 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    S. Ohkoshi, S. Sakurai, J. Jin, and K. J. Hashimoto, J. Appl. Phys. 97, 10K312 (2005).Google Scholar
  16. 16.
    M. Gich, C. Frontera, A. Roig, E. Taboada, E. Molins, H. R. Rechenberg, J. D. Ardisson, W. A. A. Macedo, C. Ritter, V. Hardy, J. Sort, V. Skumryev, and J. No-gue’s, Chem. Mater. 18, 3889 (2006).CrossRefGoogle Scholar
  17. 17.
    S. S. Yakushkin, D. A. Balaev, A. A. Dubrovskiy, S. V. Semenov, K. A. Shaikhutdinov, M. A. Kazakova, G. A. Bukhtiyarova, O. N. Martyanov, and O. A. Bayukov, J. Supercond. Nov. Magn. 31, 1209 (2018).CrossRefGoogle Scholar
  18. 18.
    J. Tucek, R. Zboril, A. Namai, and S. I. Ohkoshi, Chem. Mater. 22, 6483 (2010).CrossRefGoogle Scholar
  19. 19.
    H. L. Liu, C. H. Sonn, J. H. Wu, K.-M. Lee, and Y. K. Kim, Biomaterials 29, 4003 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Nadara, A. Mohan Banerjeea, M. R. Paia, S. S. Me-ena, R. V. Pai, R. Tewarid, S. M. Yusufb, A. K. Tripathia, and S. R. Bharadwaj, Appl. Catal., B 217, 154 (2017).CrossRefGoogle Scholar
  21. 21.
    M. M. A. Nikje and M. Vakili, Curr. Pharm. Des. 21, 5312 (2015).CrossRefGoogle Scholar
  22. 22.
    N. V. Tkachenko and A. S. Kamzin, Phys. Solid State 57, 407 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    N. V. Tkachenko and A. S. Kamzin, Phys. Solid State 58, 1552 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    B. Govindan, B. S. Latha, P. Nagamony, F. Ahmed, M. A. Saifi, A. H. Harrath, S. Alwasel, L. Mansour, and E. H. Alsharaeh, Nanomaterials 7, 138 (2017).CrossRefGoogle Scholar
  25. 25.
    F. Foroughi, S. A. Hassanzadeh-Tabrizi, and J. Ami-ghian, J. Magn. Magn. Mater. 382, 182 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    A. Inukai, N. Sakamoto, H. Aono, O. Sakurai, K. Shinozaki, H. Suzuki, and N. Wakiya, J. Magn. Magn. Mater. 323, 965 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    N. Wakiya, M. Yamasaki, T. Adachi, A. Inukai, N. Sa-kamoto, D. Fu, O. Sakurai, K. Shinozaki, and H. Suzuki, Mater. Sci. Eng. B 173, 195 (2010).CrossRefGoogle Scholar
  28. 28.
    H. Das, N. Debnath, A. Toda, T. Kawaguchi, N. Sakamoto, H. Aono, K. Shinozaki, H. Suzuki, and N. Wakiya, Adv. Powder Technol. 28, 1696 (2017).CrossRefGoogle Scholar
  29. 29.
    N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971).CrossRefGoogle Scholar
  30. 30.
    E. Murad, Phys. Chem. Miner. 23, 248 (1996).ADSCrossRefGoogle Scholar
  31. 31.
    V. G. Semenov, private commun.Google Scholar
  32. 32.
    J. Drbohlavova, R. Hrdy, V. Adam, R. Kizek, O. Schneeweiss, and J. Hubalek, Sensors 9, 2352 (2009).CrossRefGoogle Scholar
  33. 33.
    A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    O. Malina, J. Kaslik, J. Tucek, J. Cuda, I. Medrik, and R. Zboril, AIP Conf. Proc. 1622, 89 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, Weinheim, Germany, 2003).CrossRefGoogle Scholar
  36. 36.
    H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature (London, U.K.) 420, 395 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, and J. Cheon, Nat. Med. 13, 95 (2007).CrossRefGoogle Scholar
  38. 38.
    J. Tucek, R. Zboril, and D. Petridis, J. Nanosci. Nanotechnol. 6, 926 (2006).CrossRefGoogle Scholar
  39. 39.
    P. Lampen-Kelley, A. S. Kamzin, K. E. Romachevsky, D. T. M. Hue, H. D. Chinh, H. Srikanth, and M. H. Phan, J. Alloys Compd. 636, 323 (2015).CrossRefGoogle Scholar
  40. 40.
    A. C. Kamzin, P. Lampen-Kelley, and M. H. Phan, Phys. Solid State 58, 792 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Department of Electronics and Materials Science, Shizuoka UniversityNaka-kuJapan
  3. 3.Research Institute of Electronics, Shizuoka UniversityNaka-kuJapan

Personalised recommendations