Physics of the Solid State

, Volume 60, Issue 12, pp 2668–2671 | Cite as

Field Effect in Monolayer Graphene Associated with the Formation of Graphene–Water Interface

  • A. V. Butko
  • V. Yu. ButkoEmail author
  • S. P. Lebedev
  • A. A. Lebedev
  • Yu. A. Kumzerov


Establishing the features of interfacial effects on the electrical conductivity of graphene is crucial for successful design of novel graphene-based electronic devices, including chemical sensors and biosensors. We study electrical properties of monolayer graphene, prepared by thermal decomposition of silicon carbide in argon, in the field-effect transistor and the four-probe geometries. Alterations in the electrical properties of graphene in response to placing a quantity of water on its surface followed by removal of the water are investigated. In these geometries, the field effect is shown to play a key role in the way the electrical properties of graphene are affected by the formation of the graphene–water interface.



This work was partially funded by the Ioffe Institute, St. Petersburg Academic University, and the St. Petersburg Government’s Committee for Science and Higher Education.

We are grateful to V.Yu Davydov, A.N. Smirnov, A.A. Sysoeva, and A.V. Fokin for assistance.


  1. 1.
    P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, J. Am. Chem. Soc. 130, 14392 (2008).CrossRefGoogle Scholar
  2. 2.
    H. Wang, Y. H. Wu, C. X. Cong, J. Z. Shang, and T. Yu, ACS Nano 4, 7221 (2010).CrossRefGoogle Scholar
  3. 3.
    S. S. Kwon, J. Yi, W. W. Lee, J. H. Shin, S. H. Kim, S. H. Cho, S. W. Nam, and W. I. Park, ACS Appl. Mater. Interfaces 8, 834 (2016).CrossRefGoogle Scholar
  4. 4.
    A. V. Butko, V. Yu. Butko, S. P. Lebedev, A. N. Smirnov, V. Yu. Davydov, A. A. Lebedev, and Yu. A. Kumzerov, Phys. Solid State 59, 2089 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Butko, V. Yu. Butko, S. P. Lebedev, A. N. Smirnov, V. Yu. Davydov, A. A. Lebedev, and Yu. A. Kumzerov, Phys. Solid State 58, 1483 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Butko, V. Y. Butko, S. P. Lebedev, A. A. Lebedev, V. Y. Davydov, A. N. Smirnov, I. A. Eliseyev, M. S. Dunaevskiy, and Y. A. Kumzerov, Appl. Surf. Sci. 444, 36 (2018).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Butko and V. Yu. Butko, Phys. Solid State 57, 1048 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Babichev, S. A. Rykov, M. Tchernycheva, A. N. Smirnov, V. Y. Davydov, Y. A. Kumzerov, and V. Y. Butko, ACS Appl. Mater. Interfaces 8, 240 (2015).CrossRefGoogle Scholar
  9. 9.
    Y. Y. Wang and P. J. Burke, Appl. Phys. Lett. 103, 052103 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. H. Lee, B. J. Kim, K. H. Lee, I.-S. Shin, W. Huh, J. H. Cho, and M. S. Kang, Nanoscale 7, 7540 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhu, C. Wang, N. Petrone, J. Yu, C. Nuckolls, J. Hone, and Q. Lin, Appl. Phys. Lett. 106, 123503 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Nano Lett. 10, 1864 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    T. A. Petach, K. V. Reich, X. Zhang, K. Watanabe, T. Taniguchi, B. I. Shklovskii, and D. Goldhaber-Gordon, ACS Nano 11, 8395 (2017).CrossRefGoogle Scholar
  14. 14.
    V. Y. Butko, X. Chi, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 83, 4773 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    V. Y. Butko, X. Chi, and A. P. Ramirez, Solid State Commun. 128, 431 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Butko
    • 1
  • V. Yu. Butko
    • 1
    • 2
    Email author
  • S. P. Lebedev
    • 3
  • A. A. Lebedev
    • 1
  • Yu. A. Kumzerov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Academic UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations