Effect of Cobalt on the Crystal Structure and Magnetism of Electron-Doped Sr0.8Ce0.2MnO3 Oxide
- 3 Downloads
Abstract
The Sr0.8Ce0.2Mn1 – yCoyO3 – δ (y = 0.2, 0.3, 0.4, 0.5, and 0.6) complex oxides with the perovskite structure obtained from simple oxides by the solid–state reaction technique have been examined using structural analysis and magnetic measurements. Substitution of Co for Mn in the dilute Sr0.8Ce0.2MnO3 antiferromagnet with a Néel temperature of TN = 210 K leads to a decrease in the degree of tetragonal distortion of the crystal structure and transition to the cubic cell. The degeneracy of the antiferromagnetic interaction (TN = 138 K at y = 0.2) observed at the first stage of the substitution of Co for Mn changes for its gradual enhancement with an increase in the magnetic transformation temperature up to 239 K at y = 0.6. An increase in the Co content weakens the competition between the ferromagnetic and antiferromagnetic couplings and reduces the temperature of the transition to the spin-glass-like state. The magnetic inhomogeneity and formation of Co2+–Mn4+ ferromagnetic clusters in Sr0.8Ce0.2Mn0.4Co0.6O2.69 at 140 K have been observed.
Notes
REFERENCES
- 1.A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).ADSCrossRefGoogle Scholar
- 2.M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).ADSCrossRefGoogle Scholar
- 3.S. Balamurugan, K. Yamaura, A. B. Karki, D. P. Young, M. Arai, and E. Takayama Muromachi, Phys. Rev. B 74, 172406 (2006).ADSCrossRefGoogle Scholar
- 4.J. S. Srikiran, A. Das, P. L. Paulose, and S. K. Paranjpe, Appl. Phys. A 74, S814 (2002).ADSCrossRefGoogle Scholar
- 5.N. Gayathri, A. K. Raychaudhuri, and S. K. Tiwary, Phys. Rev. B 56, 1345 (1997).ADSCrossRefGoogle Scholar
- 6.G. V. Bazuev, A. V. Korolyov, M. A. Melkozyorova, and T. I. Chupakhina, J. Magn. Magn. Mater. 322, 494 (2010).ADSCrossRefGoogle Scholar
- 7.A. Sundaresan, J. L. Tholence, A. Maignan, C. Martin, M. Hervieu, B. Raveau, and E. Suard, Eur. Phys. J. B 14, 431 (2000).ADSCrossRefGoogle Scholar
- 8.W. J. Lu, B. C. Zhao, R. Ang, W. H. Song, J. J. Du, and Y. P. Sun, Phys. Lett. 346, 321 (2005).CrossRefGoogle Scholar
- 9.P. Mandal, A. Hassen, and A. Loidl, Phys. Rev. B 69, 224418 (2004).ADSCrossRefGoogle Scholar
- 10.H. Gu, H. Chen, L. Gao, Y. Zheng, X. Zhu, and L. Guo, Electrochem. Acta 54, 3532 (2009).CrossRefGoogle Scholar
- 11.S. Balamurugan, K. Yamaura, M. Arai, and E. Taka-yama Muromachi, Phys. Rev. B 76, 014414 (2007).ADSCrossRefGoogle Scholar
- 12.A. Maignan, B. Raveau, S. Hebert, V. Pralong, V. Caignaert, and D. Pelloquin, J. Phys.: Condens. Matter 18, 4305 (2006).ADSGoogle Scholar
- 13.P. D. Battle, T. C. Gibb, and C. W. Jones, J. Solid State Chem. 74, 60 (1988).ADSCrossRefGoogle Scholar
- 14.H. Wu. K. Zhu, G. Xu, and H. Wang, Phys. B (Amsterdam, Neth.) 407, 770 (2012).Google Scholar
- 15.Z. Zhang, C. J. Howard, D. Kennedy, M. Matsuda, and M. Miyake, J. Phys.: Condens. Matter 21, 124218 (2009).ADSGoogle Scholar
- 16.T. I. Chupakhina and G. V. Bazuev, Inorg. Mater. 47, 1361 (2011).CrossRefGoogle Scholar
- 17.S. N. Shamin, V. V. Mesilov, M. S. Udintseva, A. V. Ko-rolev, T. I. Chupakhina, G. V. Bazuev, and V. R. Galakhov, Curr. Appl. Phys. 16, 1597 (2016).ADSCrossRefGoogle Scholar
- 18.G. V. Bazuev and A. V. Korolyev, J. Magn. Magn. Mater. 320, 2262 (2008).ADSCrossRefGoogle Scholar
- 19.G. V. Bazuev, Russ. Chem. Rev. 75, 749 (2006).ADSCrossRefGoogle Scholar
- 20.A. Maignan, S. Hebert, N. Nguyen, V. Pralong, D. Pelloquin, and V. Caignaert, J. Magn. Magn. Mater. 303, 197 (2006).ADSCrossRefGoogle Scholar
- 21.R. D. Shannon, Acta Crystallogr., A 32, 75 (1976).CrossRefGoogle Scholar