Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2628–2633 | Cite as

Excitons in ZnO Quantum Wells

  • M. N. Bataev
  • N. G. Filosofov
  • A. Yu. Serov
  • V. F. Agekyan
  • C. Morhain
  • V. P. KochereshkoEmail author
LOW-DIMENSIONAL SYSTEMS
  • 2 Downloads

Abstract

Reflectance and photoluminescence spectra of the ZnO/Zn0.78Mg0.22O structures with ZnO quantum wells and thick ZnO and Zn0.78Mg0.22O layers have been thoroughly investigated at different temperatures and excitation intensities and wavelengths. All the observed spectral lines have been identified. It has been established that the built-in electric field does not affect the spectrum as strongly as was expected. The built-in field is apparently effectively screened by the carriers that have migrated to the bands from donor and acceptor levels. The parameters determining the exciton properties in zinc oxide have been estimated.

Notes

ACKNOWLEDGMENTS

This study was supported in part by the Project no. 11.37.210.2016 of the St. Petersburg State University.

REFERENCES

  1. 1a.
    D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960);ADSCrossRefGoogle Scholar
  2. 1b.
    J. J. Hopfield, J. Phys. Chem. Solids 15, 97 (1960).ADSCrossRefGoogle Scholar
  3. 2.
    M. R. Wagner, PhD Thesis (Berlin, 2010).Google Scholar
  4. 3.
    V. A. Kiselev, B. V. Novikov, and A. E. Cherednichenko, Exitone Spectroscopy of Surface Region of Semiconductors (SPbGU, St. Petersburg, 2003) [in Russian].Google Scholar
  5. 4.
    E. L. Ivchenko, P. S. Kop’ev, V. P. Kochereshko, I. N. Ural’tsev, D. R. Yakovlev, and S. V. Ivanov, Sov. Phys. Semicond. 22, 495 (1988).Google Scholar
  6. 5.
    C. Mohrain, T. Bretagnon, P. Lefebre, X. Tang, P. Valvin, T. Guillet, D. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Phys. Rev. B 71, 241305(R) (2005).Google Scholar
  7. 6.
    D. A. Andronikov, Bachelor’s Work (SPb State Univ., St. Petersburg, 2002).Google Scholar
  8. 7.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).Google Scholar
  9. 8.
    E. L. Ivchenko, V. P. Kochereshko, P. S. Kopev, V. A. Kosobukin, I. N. Uraltsev, and D. R. Yakovlev, Solid State Commun. 70, 529 (1989).ADSCrossRefGoogle Scholar
  10. 9.
    Landolt Börnstein Database (Springer, Berlin, Heidelberg, 2000).Google Scholar
  11. 10.
    B. A. Kiselev, B. S. Razbirin, and I. N. Ural’tsevyu, JETP Lett. 18, 294 (1973).ADSGoogle Scholar
  12. 11.
    V. V. Kolosov, J. Phys. B 20, 2359 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1997).Google Scholar
  14. 13.
    G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S. A. Crooker, Q. McCulloch, D. Wolverson, N. A. Gippius, and A. Waag, Phys. Rev. B 65, 16335 (2002).Google Scholar
  15. 14.
    G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, J. Nürnberger, W. Faschinger, and G. Land-wehr, Phys. Rev. B 60, R8485 (1999).ADSCrossRefGoogle Scholar
  16. 15.
    F. Bassani, S. Tatarenko, K. Saminadayar, N. Magnea, R. T. Cox, A. Tardot, and C. Grattepain, J. Appl. Phys. 72, 2927 (1992).ADSCrossRefGoogle Scholar
  17. 16.
    V. P. Kochereshko, G. V. Astakhov, D. R. Yakovlev, W. Ossau, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, Phys. Status Solidi B 201, 345 (2000).ADSCrossRefGoogle Scholar
  18. 17.
    E. Gross, S. Permogorov, V. Travnikov, and A. Selkin, Solid State Commun. 10, 1071 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Bataev
    • 1
  • N. G. Filosofov
    • 1
  • A. Yu. Serov
    • 1
  • V. F. Agekyan
    • 1
  • C. Morhain
    • 2
  • V. P. Kochereshko
    • 1
    • 3
    Email author
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Centre de Recherche sur I’Hetero-Epitaxie et ses Applications-CNRSValbonneFrance
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations