Physics of the Solid State

, Volume 60, Issue 12, pp 2551–2558 | Cite as

Calculation of Young’s Modulus of MoS2-Based Single-Wall Nanotubes Using Force-Field and Hybrid Density Functional Theory

  • A. V. Bandura
  • S. I. LukyanovEmail author
  • R. A. Evarestov
  • D. D. Kuruch


A force field is proposed that reproduces with a high accuracy a large number of properties of the bulk crystal MoS2 phases, monolayers, and nanotubes. The reproduced values are both the experimental results and the results of quantum chemical calculations. The elaborated interaction potential can be useful primarily for investigation of multiwall MoS2 nanotubes and their thermodynamic properties, especially, since the potential is able to reproduce the frequencies of the crystal phonon spectrum. In this study the proposed potential is applied to simulate the temperature dependence of a number of properties of the armchair and zigzag nanotubes. The calculations have been performed using molecular mechanics method within the framework of quasi harmonic approximation which is carried out through the estimation of the temperature dependence of the Helmholtz free energy.



This study was supported by the Russian Foundation for Basic Research, grant no. 17-03-00130-a. Also, the computational resources of the University Computer Center of Saint-Petersburg State University ( were used to accomplish the high-performance computations.


  1. 1.
    R. Tenne and M. Redlich, Chem. Soc. Rev. 39, 1423 (2010).CrossRefGoogle Scholar
  2. 2.
    I. Kaplan-Ashiri and R. Tenne, J. Miner. Met. Mater. Soc. 68, 151 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Dallavalle, N. Sändig, and F. Zerbetto, Langmuir 28, 7393 (2012).CrossRefGoogle Scholar
  4. 4.
    M. Strojnik, A. Kovic, A. Mrzel, J. Buh, J. Strle, and D. Mihailovic, AIP Adv. 4, 097114 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    S. Zhuo, Y. Xu, W. Zhao, J. Zhang, and B. Zhang, Angew. Chem. Int. Ed. 52, 8602 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Energy Environ. Sci. 7, 209 (2014).CrossRefGoogle Scholar
  7. 7.
    V. Brüser, R. Popovitz-Biro, A. Albu-Yaron, T. Lorenz, G. Seifert, R. Tenne, and A. Zak, Inorganics 2, 177 (2014).CrossRefGoogle Scholar
  8. 8.
    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsÿar, P. Stadelmann, F. Levy, and D. Mihailovic, Science (Washington, DC, U. S.) 292, 479 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    T. Lorenz, D. Teich, J.-O. Joswig, and G. Seifert, J. Phys. Chem. C 116, 11714 (2012).CrossRefGoogle Scholar
  10. 10.
    J. Wang, J. Liu, H. Yang, Z. Chen, J. Lin, and Z. X. Shen, J. Mater. Chem. A 4, 7565 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Virsek, M. Krause, A. Kolitsch, A. Mrzel, I. Iskra, S. D. Skapin, and M. Remskar, J. Phys. Chem. C 114, 6458 (2010).CrossRefGoogle Scholar
  12. 12.
    G. Seifert, T. Köhler, and R. Tenne, J. Phys. Chem. B 106, 2497 (2002).CrossRefGoogle Scholar
  13. 13.
    N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Phys. Rev. B 12, 659 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    M. Damnjanović, T. Vuković, and I. Milošević, Israel. J. Chem. 57, 450 (2017).CrossRefGoogle Scholar
  15. 15.
    T. Liang, S. R. Phillpot, and S. B. Sinnott, Phys. Rev. B 79, 245110 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    T. Liang, S. R. Phillpot, and S. B. Sinnott, Phys. Rev. B 85, 199903(E) (2012).Google Scholar
  17. 17.
    J. A. Stewart and D. E. Spearot, Mod. Simul. Mater. Sci. Eng. 21, 045003 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    S. Xiong and G. Cao, Nanotechnology 27, 105701 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    E. W. Bucholz and S. B. Sinnott, J. Appl. Phys. 112, 123510 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).ADSCrossRefGoogle Scholar
  21. 21.
    U. Becker, K. M. Rosso, R. Weaver, M. Warren, and M. F. Hochella, Geochim. Cosmochim. Acta 67, 923 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Morita, T. Onodera, A. Suzuki, R. Sahnoun, M. Ko-yama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, C. A. D. Carpio, T. Shin-yoshi, N. Nishino, A. Suzuki, and A. Miyamoto, Appl. Surf. Sci. 254, 7618 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    A. K. Rappe and W. A. Goddard, J. Phys. Chem. 95, 3358 (1991).CrossRefGoogle Scholar
  24. 24.
    V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Comput. Mater. Sci. 48, 101 (2010).CrossRefGoogle Scholar
  25. 25.
    B. Luan and R. Zhou, Appl. Phys. Lett. 108, 131601 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    Z. Gu, P. De Luna, Z. Yanga, and R. Zhou, Phys. Chem. Chem. Phys. 19, 3039 (2017).CrossRefGoogle Scholar
  27. 27.
    X. Wang, B. Li, D. R. Bell, W. Li, and R. Zhou, J. Mater. Chem. A 5, 23020 (2017).CrossRefGoogle Scholar
  28. 28.
    F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    J.-W. Jiang, H. S. Park, and T. Rabczuk, J. Appl. Phys. 114, 064307 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    J.-W. Jiang, Nanotechnology 26, 315706 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, M. Llunell, M. Causà, and Y. Noël, CRYSTAL17 User’s Manual (Univ. of Turin, Torino (2017).Google Scholar
  32. 32.
    L. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    R. B. Ross, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 87, 2812 (1987).ADSCrossRefGoogle Scholar
  34. 34.
    J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  37. 37.
    C. Conesa, J. Phys. Chem. C 114, 22718 (2010).CrossRefGoogle Scholar
  38. 38.
    R. A. Evarestov, A. V. Bandura, V. V. Porsev, and A. V. Kovalenko, J. Comput. Chem. 38, 2088 (2017).CrossRefGoogle Scholar
  39. 39.
    F. Pascale, C. M. Zicovich-Wilson, F. Lόpez Gejo, B. Civalleri, R. Orlando, and R. Dovesi, J. Comput. Chem. 25, 888 (2004).CrossRefGoogle Scholar
  40. 40.
    J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).CrossRefGoogle Scholar
  41. 41.
    B. Schonfeld, J. J Huang, and S. C. Moss, Acta Crystallogr., B 39, 404 (1983).CrossRefGoogle Scholar
  42. 42.
    J. L. Feldman, Phys. Chem. Solids 37, 1141 (1976).ADSCrossRefGoogle Scholar
  43. 43.
    Z.-H. Chi, X.-M. Zhao, H. Zhang, A. F. Goncharov, S. S. Lobanov, T. Kagayama, M. Sakata, and X.‑J. Chen, Phys. Rev. Lett. 113, 036802 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    L. Wei, C. Jun-fang, H. Qinyu, and W. Teng, Phys. B 405, 2498 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K. S. Novoselov, Phys. Rev. B 87, 081307(R) (2013).Google Scholar
  46. 46.
    A. Molina-Sánchez, K. Hummer, and L. Wirtz, Surf. Sci. Rep. 70, 554 (2015).ADSCrossRefGoogle Scholar
  47. 47.
    A. Molina-Sánchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon, New York, 1986).Google Scholar
  49. 49.
    S. I. Lukyanov, A. V. Bandura, and R. A. Evarestov, Phys. Solid State 57, 2464 (2015).ADSCrossRefGoogle Scholar
  50. 50.
    A. V Bandura, R. A Evarestov, S. I. Lukyanov, S. Piskunov, and Y. F. Zhukovskii, Mater. Res. Express 4, 085014 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Bandura
    • 1
  • S. I. Lukyanov
    • 1
    Email author
  • R. A. Evarestov
    • 1
  • D. D. Kuruch
    • 1
  1. 1.Institute of Chemistry, Saint-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations