Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2311–2343 | Cite as

MnGa Acceptor Center in GaAs (Review)

  • N. S. AverkievEmail author
  • A. A. Gutkin
REVIEWS
  • 2 Downloads

Abstract

The model of the MnGa acceptor in GaAs in which initial ground state of a coupled hole Γ8 is changed due to the antiferromagnetic exchange interaction with five 3d electrons of the Mn core is described. The acceptor energy spectrum and the wave functions of its states and also their changes under action of deformations, electric and magnetic fields are considered. Expressions are presented for the description of various properties of isolated MnGa acceptors in GaAs, and the data of some experiments (changes in the \({\text{Mn}}_{{{\text{Ga}}}}^{{\text{0}}}\) luminescence and absorption spectra and polarization under uniaxial pressures and in magnetic field, EPR spectra, temperature dependence of the magnetic susceptibility, circular polarization of photoluminescence during excitation by polarized light in magnetic field, etc.) are analyzed. It is demonstrated that, in some cases, it is necessary to take into account the existence of random electric and strain fields splitting the acceptor states in the crystal. The analysis results show that this model agrees well with most of the experimental results. The exchange interaction constant is in the range of 3–5 meV.

Notes

ACKNOWLEDGMENTS

We are grateful to N.A. Romanov, V.F. Sapega, and K.F. Shtel’makh for fruitful and useful discussions.

This work was supported in part by the Russian Scientific Foundation (project 14-42-00015 (theoretical calculations and estimations)) and the Program of the Presidium of RAS No. 9 “Terahertz optoelectronics and spintronics.”

REFERENCES

  1. 1.
    E. M. Omel’yanovskii and V. I. Fistul’, Transition Metals Impurities in Semiconductors (Metallurgiya, Moscow, 1983; CRC, Boca Raton, FL, 1986).Google Scholar
  2. 2.
    V. F. Masterov, Sov. Phys. Semicond. 18, 1 (1984).Google Scholar
  3. 3.
    V. I. Fistul’, Dopant Atoms in Semiconductors: State and Behavior (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  4. 4.
    D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153 (2007).Google Scholar
  5. 5.
    T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 197 (2014).ADSGoogle Scholar
  6. 6.
    G. W. Ludwig and H. H. Woodbury, Phys. Rev. Lett. 5, 98 (1960).ADSGoogle Scholar
  7. 7.
    A. B. Roitsin and L. A. Firshtein, TEKh 2, 747 (1966).Google Scholar
  8. 8.
    U. Kaufmann and J. Schneider, Festkörperprobleme, Vol. 20 of Advances in Solid State Physics, Ed. by J. Trensch (Vieweg, Braunschweig, 1980), p. 87.Google Scholar
  9. 9.
    I. Ya. Karlik, I. A. Merkulov, D. I. Mirlin, L. P. Nikitin, V. I. Perel’, and V. F. Sapega, Sov. Phys. Solid State 24, 2022 (1982).Google Scholar
  10. 10.
    N. S. Averkiev, A. A. Gutkin, N. M. Kolchanova, and M. A. Reshchikov, Sov. Phys. Semicond. 18, 1019 (1984).Google Scholar
  11. 11.
    L. Montelius, S. Nilsson, L. Samuelson, E. Janzen, and M. Ahlstrom, J. Appl. Phys. 64, 1564 (1988).ADSGoogle Scholar
  12. 12.
    D. G. Andrianov, Yu. N. Bol’sheva, G. V. Lazareva, A. S. Savel’ev, and S. M. Yakubenya, Sov. Phys. Semicond. 17, 506 (1983).Google Scholar
  13. 13.
    A. M. Hennel, A. Twardowski, and M. Godlewski, Acta Phys. Polon. A 67, 313 (1985).Google Scholar
  14. 14.
    N. S. Averkiev, A. A. Gutkin, E. B. Osipov, and M. A. Reshchikov, Sov. Phys. Semicond. 21, 1119 (1987).Google Scholar
  15. 15.
    J. Schneider, U. Kaufmann, W. Wilkening, M. Baeumler, and F. Kohl, Phys. Rev. Lett. 59, 240 (1987).ADSGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  17. 17.
    V. F. Sapega, M. Mureno, M. Ramsteiner, L. Daweritz, and K. Ploog, Phys. Rev. B 66, 075217 (2002).ADSGoogle Scholar
  18. 18.
    T. Jungwirth, K. I. Wang, J. Masek, K. W. Edmonds, J. Konig, J. Sinova, N. A. Goncharuk, A. H. MacDonald, M. Sawicki, A. W. Rushforth, R. P. Champion, L. X. Zhao, C. T. Foxon, and B. L. Gallagher, Phys. Rev. B 72, 165204 (2005).ADSGoogle Scholar
  19. 19.
    N. S. Averkiev, A. A. Gutkin, E. B. Osipov, and M. A. Reshchikov, Sov. Phys. Solid State 30, 438 (1988).Google Scholar
  20. 20.
    N. S. Averkiev, A. A. Gutkin, E. B. Osipov, and M. A. Reshchikov, PhTI Preprint No. 1201 (Ioffe Phys. Tech. Inst., Leningrad, 1988).Google Scholar
  21. 21.
    W. Schairer and M. Schmidt, Phys. Rev. B 10, 2501 (1974).ADSGoogle Scholar
  22. 22.
    R. N. Bhargava and M. I. Nathan, Phys. Rev. 161, 695 (1967).ADSGoogle Scholar
  23. 23.
    G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).Google Scholar
  24. 24.
    G. L. Bir, E. I. Butikov, and G. E. Pikus, J. Phys. Chem. Solid 24, 1467 (1963).ADSGoogle Scholar
  25. 25.
    J. Feinleib, S. Groves, W. Paul, and R. Zallen, Phys. Rev. 131, 2070 (1963).ADSGoogle Scholar
  26. 26.
    A. M. Hennel, C. D. Brandt, Y.-T. Wu, T. Bryskiewicz, K. Y. Ko, J. Lagowski, and H. C. Gatos, Phys. Rev. B 33, 7353 (1986).ADSGoogle Scholar
  27. 27.
    R. A. Chapman and W. G. Hutchinson, Phys. Rev. Lett. 18, 443 (1967).ADSGoogle Scholar
  28. 28.
    M. Linnarsson, E. Jansen, B. Monemar, M. Kleverman, and A. Thilderkvist, Phys. Rev. B 55, 6938 (1997).ADSGoogle Scholar
  29. 29.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980), rus. p. 567.Google Scholar
  30. 30.
    R. I. Dzhioev, B. P. Zakharchenya, and V. G. Fleisher, JETP Lett. 17, 174 (1973)].ADSGoogle Scholar
  31. 31.
    Th. Fray, M. Maier, J. Schneider, and M. Gehrke, J. Phys. C 21, 5539 (1988).ADSGoogle Scholar
  32. 32.
    V. F. Sapega, T. Ruf, and M. Cardona, Phys. Status Solidi B 226, 339 (2001).ADSGoogle Scholar
  33. 33.
    I. V. Krainov, J. Debus, N. S. Averkiev, G. S. Dmitriev, V. F. Sapega, and E. Lahderanta, Phys. Rev. B 93, 235202 (2016).ADSGoogle Scholar
  34. 34.
    N. Almeleh and B. Goldstein, Phys. Rev. 128, 1568 (1962).ADSGoogle Scholar
  35. 35.
    R. Bleekrode, J. Dieleman, and H. J. Vegter, Phys. Lett. 2, 355 (1962).ADSGoogle Scholar
  36. 36.
    K. Lassmann and Hp. Schad, Solid State Commun. 18, 449 (1976).ADSGoogle Scholar
  37. 37.
    D. G. Andrianov, Yu. A. Grigor’ev, S. O. Klimonskii, A. S. Savel’ev, and S. M. Yakubenya, Sov. Phys. Semicond. 18, 162 (1984).Google Scholar
  38. 38.
    V. F. Masterov, S. B. Mikhrin, B. E. Samorukov, and K. F. Shtel’makh, Sov. Phys. Semicond. 17, 796 (1983).Google Scholar
  39. 39.
    V. F. Masterov, K. D. Shtel’makh, and M. N. Barbashev, Sov. Phys. Semicond. 22, 408 (1988).Google Scholar
  40. 40.
    N. P. Baran, V. Ya. Bratus’, V. M. Maksimenko, and A. V. Markov, JETP Lett. 55, 101 (1992).ADSGoogle Scholar
  41. 41.
    E. I. Rashba and V. I. Sheka, Sov. Phys. Solid State 6, 451 (1964).Google Scholar
  42. 42.
    M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. Rev. B 89, 075430 (2014).ADSGoogle Scholar
  43. 43.
    N. S. Averkiev, A. A. Gutkin, O. G. Krasikova, E. B. Osipov, and M. A. Reshchikov, Sov. Phys. Semicond. 23, 44 (1989).Google Scholar
  44. 44.
    K. F. Shtel’makh, M. P. Korobkov, and I. G. Ozerov, Semiconductors 37, 872 (2003).ADSGoogle Scholar
  45. 45.
    A. K. Bhattacharjee and S. Rodrigues, Phys. Rev. B 6, 3836 (1972).ADSGoogle Scholar
  46. 46.
    N. S. Averkiev, V. M. Asnin, Yu. N. Lomasov, G. E. Pi-kus, A. A. Rogachev, and N. A. Rud’, Sov. Phys. Solid State 23, 1815 (1981).Google Scholar
  47. 47.
    W. O. G. Schmitt, E. Bangert, and G. Landwehr, J. Phys.: Condens. Matter 3, 6789 (1991).ADSGoogle Scholar
  48. 48.
    R. Atzmuller, M. Dahl, J. Kraus, G. Schaak, and J. Schubert, J. Phys.: Condens. Matter 3, 6775 (1991).ADSGoogle Scholar
  49. 49.
    V. D. Dymnikov, M. I. D’yakonov, and V. I. Perel’, Sov. Phys. JETP 44, 1252 (1976).ADSGoogle Scholar
  50. 50.
    D. G. Polyakov, Sov. Phys. Solid State 24, 2017 (1982).Google Scholar
  51. 51.
    B. P. Zakharchenya, D. N. Mirlin, V. I. Perel’, and I. I. Reshina, Sov. Phys. Usp. 25, 143 (1982).ADSGoogle Scholar
  52. 52.
    J. Jackle, Z. Phys. 257, 212 (1972).ADSGoogle Scholar
  53. 53.
    N. S. Averkiev, A. A. Gutkin, O. G. Krasikova, E. B. Osipov, and M. A. Reshschikov, Solid State Commun. 68, 1025 (1988).ADSGoogle Scholar
  54. 54.
    K. Suzuki and N. Mikoshiba, Phys. Rev. Lett. 28, 96 (1972).ADSGoogle Scholar
  55. 55.
    K. N. Shrivastava, Phys. Status Solidi B 117, 437 (1983).ADSGoogle Scholar
  56. 56.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, London, 1970), Vol. 1.Google Scholar
  57. 57.
    V. F. Masterov, K. F. Shtel’makh, V. P. Maslov, S. B. Mikhrin, and B. E. Samorukov, Semiconductors 37, 918 (2003).ADSGoogle Scholar
  58. 58.
    V. Bonch-Bruevich and S. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) [in Russian].Google Scholar
  59. 59.
    W. J. Brown, Jr. and J. S. Blakemore, J. Appl. Phys. 43, 2242 (1972).ADSGoogle Scholar
  60. 60.
    W. J. Brown, Jr., D. A. Woodbury, and J. S. Blakemore, Phys. Rev. B 8, 5664 (1973).ADSGoogle Scholar
  61. 61.
    J. S. Blakemore, W. J. Brown, Jr., M. L. Stress, and D. A. Woodbury, J. Appl. Phys. 44, 3352 (1973).ADSGoogle Scholar
  62. 62.
    L. J. Vieland, J. Appl. Phys. 33, 2007 (1962).ADSGoogle Scholar
  63. 63.
    A. A. Gutkin, N. M. Kolchanova, T. S. Lagunova, A. E. Plotitsyn, M. A. Reshchikov, and B. E. Samorukov, Sov. Phys. Semicond. 22, 879 (1988).Google Scholar
  64. 64.
    V. A. Lagunov, in Algorithms and Software for Physical Problems (FTI AN SSSR, Leningrad, 1978), p. 14 [in Russian]; V. A. Lagunov and V. I. Polozenko, Zavod. Lab. 43, 947 (1977).Google Scholar
  65. 65.
    K. Zeeger, Semiconductor Physics (Springer, Wien, 1973; Mir, Moscow, 1977).Google Scholar
  66. 66.
    F. J. Blatt, Theory of Mobility of Electrons in Solids (Academic, New York, 1957; GIFML, Moscow, 1963).Google Scholar
  67. 67.
    B. L. Gel’mont and M. I. D’yakonov, Sov. Phys. Semicond. 5, 1905 (1971).Google Scholar
  68. 68.
    A. K. Bhattacharjee and C. Benoit a la Guilaume, Solid State Commun. 113, 17 (2000).ADSGoogle Scholar
  69. 69.
    J. A. Gaj, R. Planel, and G. Fishman, Solid State Commun. 29, 435 (1979).ADSGoogle Scholar
  70. 70.
    A. K. Bhattacharjee, G. Fishman, and B. Coqblin, Phys. B (Amsterdam, Neth.) 117118, 449 (1983).Google Scholar
  71. 71.
    A. K. Bhattacharjee, Phys. Rev. B 46, 5266 (1992).ADSGoogle Scholar
  72. 72.
    T. Mizokawa and A. Fujimori, Phys. Rev. B 48, 14150 (1993).ADSGoogle Scholar
  73. 73.
    F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).ADSGoogle Scholar
  74. 74.
    N. S. Averkiev, A. A. Gutkin, O. G. Maksimova, and E. B. Osipov, Sov. Phys. Semicond. 24, 1019 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations