Advertisement

Physics of the Solid State

, Volume 60, Issue 10, pp 2091–2096 | Cite as

Initial Stages of Growth of Barium Zirconate Titanate and Barium Stannate Titanate Films on Single-Crystal Sapphire and Silicon Carbide

  • A. V. Tumarkin
  • M. V. Zlygostov
  • I. T. Serenkov
  • V. I. Sakharov
  • V. V. Afrosimov
  • A. A. Odinets
Surface Physics and Thin Films

Abstract

The initial stages of growth of barium zirconate titanate and barium stannate titanate ferroelectric films on single-crystal sapphire and silicon carbide are studied for the first time. The choice of substrates is dictated by the possibility of using such structures in ultra-high frequency devices. The growth of discontinuous BaZrxTi1–xO3 films is found to be mediated by the gas phase mass transport mechanism in the studied temperature range. For deposition of BaSnxTi1–xO3 films, the mechanism of mass transport switches at ~800°C from surface diffusion to gas phase diffusion; also, the films deposited on sapphire and silicon carbide have considerably different elemental composition. The formation of an intermediate SiO2 layer is noted on silicon carbide during the growth of oxide films on this substrate, its thickness depending on the deposition temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ahmed, I. A. Goldthorpe, and A. K. Khandani, Appl. Phys. Rev. 2, 011302 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    C. J. G. Meyers, Ch. R. Freeze, S. Stemmer, and R. A. York, Appl. Phys. Lett. 109, 112902 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    P. S. Krishnaprasad, A. Antony, F. Rojas, and M. K. Jayaraj, J. Appl. Phys. 117, 124102 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, J. Alloys Compd. 687, 458 (2016).CrossRefGoogle Scholar
  5. 5.
    A. V. Tumarkin, E. R. Tepina, E. A. Nenasheva, N. F. Kartenko, and A. B. Kozyrev, Tech. Phys. 57, 787 (2012).CrossRefGoogle Scholar
  6. 6.
    O. Yu. Buslov, V. N. Keis, A. B. Kozyrev, I. V. Kotel’nikov, and P. V. Kulik, Tech. Phys. 50, 1195 (2005).CrossRefGoogle Scholar
  7. 7.
    A. B. Kozyrev, A. V. Ivanov, O. I. Soldatenkov, S. V. Razumov, A. V. Tumarkin, and S. Yu. Aigunova, Tech. Phys. Lett. 27, 1032 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    A. B. Kozyrev, M. M. Gaidukov, A. G. Gagarin, A. V. Tumarkin, and S. V. Razumov, Tech. Phys. Lett. 28, 239 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Tumarkin, A. G. Gagarin, A. G. Altynnikov, M. M. Gaidukov, A. A. Odinets, S. V. Razumov, and A. B. Kozyrev, Thin Solid Films 593, 189 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    A. Tumarkin, V. Stozharov, A. Altynnikov, A. Gagarin, S. Razumov, E. Kaptelov, S. Senkevich, I. Pronin, and A. Kozyrev, Integr. Ferroelectr. 173, 140 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Hoffmann and R. M. Waser, Integr. Ferroelectr. 17, 141 (1997).CrossRefGoogle Scholar
  12. 12.
    D. Y. Wang, P. Yun, Y. Wang, H. L. W. Chan, and C. L. Choy, Thin Solid Films 517, 2092 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    N. Waldhoff, D. Fasquelle, and K. Blary, Appl. Phys. Lett. 105, 132907 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Kukushkin and V. V. Slezov, Disperse Systems on the Surface of Solids. Mechanisms of Thin Film Formation (Evolutionary Approach) (Nauka, St. Petersburg, 1996) [in Russian].Google Scholar
  15. 15.
    S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 86, 1370 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Kukushkin, Thin Solid Films 207, 302 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 51, 1 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Tumarkin, I. T. Serenkov, and V. I. Sakharov, Phys. Solid State 52, 2561 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Tumarkin, S. A. Kukushkin, A. V. Osipov, A. V. Ankudinov, and A. A. Odinets, Phys. Solid State 57, 815 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Tumarkin, I. T. Serenkov, V. I. Sakharov, V. V. Afrosimov, and A. A. Odinets, Phys. Solid State 58, 364 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Tumarkin, I. T. Serenkov, V. I. Sakharov, S. V. Razumov, A. A. Odinets, M. V. Zlygostov, E. N. Sapego, and V. V. Afrosimov, Phys. Solid State 59, 2374 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Afrosimov, R. N. Il’in, S. F. Karmanenko, F. F. Melkov, V. I. Sakharov, and I. T. Serenkov, Thin Solid Films 492, 146 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    J. Roy, S. Chandra, S. Das, and S. Maitra, Rev. Adv. Mater. Sci. 38, 29 (2014).Google Scholar
  24. 24.
    A. V. Tumarkin and A. A. Odinets, Phys. Solid State 60, 87 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Tumarkin, V. A. Volpyas, M. V. Zlygostov, A. A. Odinets, and E. N. Sapego, Bull. Russ. Acad. Sci.: Phys. 82, 346 (2018).CrossRefGoogle Scholar
  26. 26.
    G. V. Belov, V. S. Iorish, and V. S. Yungman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 23, 173 (1990).CrossRefGoogle Scholar
  27. 27.
    I. S. Kulikov, Thermodynamics of Oxides (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Tumarkin
    • 1
  • M. V. Zlygostov
    • 1
  • I. T. Serenkov
    • 2
  • V. I. Sakharov
    • 2
  • V. V. Afrosimov
    • 2
  • A. A. Odinets
    • 1
  1. 1.St. Petersburg Electrotechnical University “LETI,”St. PetersburgRussia
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations