Advertisement

Physics of the Solid State

, Volume 60, Issue 10, pp 2072–2077 | Cite as

Co–In2O3 Nanocomposite Films: Synthesis and Structural and Magnetic Properties

  • L. E. Bykova
  • V. S. Zhigalov
  • V. G. Myagkov
  • M. N. Volochaev
  • A. A. Matsynin
  • G. N. Bondarenko
  • G. S. Patrin
Low-Dimensional Systems
  • 18 Downloads

Abstract

The structural and magnetic properties of granular Co–In2O3 nanocomposite films formed by vacuum annealing of In/Co3O4 film bilayers at a temperature of 550°C have been investigated. The synthesized Co–In2O3 films contain ferromagnetic cobalt nanoclusters with an average size of 60 nm and a magnetization of ~340 emu/cm3 surrounded by the In2O3 layer and exhibit the thermally activated conductivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Batlle and A. Labarta, J. Phys. D 35, R15 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    A. Pucci, G. Clavel, M.-G. Willinger, D. Zitoun, and N. Pinna, J. Phys. Chem. C 113, 12048 (2009).CrossRefGoogle Scholar
  3. 3.
    T. Wen and K. M. Krishnan, J. Phys. D 44, 393001 (2011).CrossRefGoogle Scholar
  4. 4.
    J. T. Jiang, X. J. Wei, C. Y. Xu, Z. X. Zhou, and L. Zhen, J. Magn. Magn. Mater. 334, 111 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    M. Baikousi, O. Kostoula, I. Panagiotopoulos, T. Bakas, A. P. Douvalis, I. Koutselas, A. B. Bourlinos, and M. A. Karakassides, Thin Solid Films 520, 159 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    J. Okabayashi, S. Kono, Y. Yamada, and K. Nomura, AIP Adv. 1, 042138 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    A. Butera, J. N. Zhou, and J. A. Barnard, J. Appl. Phys. 87, 5627 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, J. Appl. Phys. 86, 2161 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    J. Gómez, A. Butera, and J. A. Barnard, Phys. Rev. B 70, 054428 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    O. Santini, D. H. Mosca, W. H. Schreiner, R. Marangoni, J. L. Guimaraes, F. Wypych, and A. J. A. de Oliveira, J. Phys. D 36, 428 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    V. G. Myagkov, I. A. Tambasov, O. A. Bayukov, V. S. Zhigalov, L. E. Bykova, Yu. L. Mikhlin, M. N. Volochaev, and G. N. Bondarenko, J. Alloys Compd. 612, 189 (2014).CrossRefGoogle Scholar
  12. 12.
    I. A. Tambasov, K. O. Gornakov, V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, and E. V. Yozhikova, Phys. B (Amsterdam, Neth.) 478, 135 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    V. G. Myagkov, L. E. Bykova, O. A. Bayukov, V. S. Zhigalov, I. A. Tambasov, S. M. Zharkov, A. A. Matsynin, and G. N. Bondarenko, J. Alloys Compd. 636, 223 (2015).CrossRefGoogle Scholar
  14. 14.
    V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, S. M. Zharkov, A. A. Matsynin, M. N. Volochaev, I. A. Tambasov, and G. N. Bondarenko, J. Alloys Compd. 665, 197 (2016).CrossRefGoogle Scholar
  15. 15.
    V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, M. N. Volochaev, I. A. Tambasov, Yu. L. Mikhlin, and G. N. Bondarenko, J. Alloys Compd. 724, 820 (2017).CrossRefGoogle Scholar
  16. 16.
    V. S. Zhigalov, V. G. Myagkov, L. E. Bykova, G. N. Bondarenko, A. A. Matsynin, and M. N. Volochaev, Phys. Solid State 59, 392 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    L. E. Bykova, V. G. Myagkov, I. A. Tambasov, O. A. Bayukov, V. S. Zhigalov, K. P. Polyakova, G. N. Bondarenko, I. V. Nemtsev, V. V. Polyakov, G. S. Patrin, and D. A. Velikanov, Phys. Solid State 57, 386 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    Z.-K. Tang, L.-M. Tang, D. Wang, L.-L. Wang, and K.-Q. Chen, Eur. Phys. Lett. 97, 57006 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    X. Meng, L. Tang, and J. Li, J. Phys. Chem. C 114, 17569 (2011).CrossRefGoogle Scholar
  20. 20.
    R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, J. Adv. Nanomater. 2, 105 (2017).CrossRefGoogle Scholar
  21. 21.
    N. H. Hong, J. Sakai, N. T. Huong, and V. Brizé, J. Magn. Magn. Mater. 302, 228 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    M. Z. Naik and A. V. Salker, Mater. Res. Innovations 21, 237 (2017).CrossRefGoogle Scholar
  23. 23.
    Z. Li and Y. Dzenis, Talanta 85, 82 (2011).CrossRefGoogle Scholar
  24. 24.
    Z. Wang, C. Hou, Q. De, F. Gu, and D. Han, ACS Sens. 3, 468 (2018).CrossRefGoogle Scholar
  25. 25.
    L. A. Obvintseva, Ros. Khim. Zh. 52, 113 (2008).Google Scholar
  26. 26.
    S. Chikazumi, J. Appl. Phys. 32, S81 (1961).ADSCrossRefGoogle Scholar
  27. 27.
    M. N. Volochaev and Yu. Yu. Loginov, Vestn. SibGAU 17, 792 (2016).Google Scholar
  28. 28.
    C. A. Neugebauer and M. B. Webb, J. Appl. Phys. 33, 7482 (1962).CrossRefGoogle Scholar
  29. 29.
    P. Scherrer and N. G. Wissen, Gottingen. Math.-Phys. K1, 98 (1918).Google Scholar
  30. 30.
    A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Sci., Cambridge, 2003).Google Scholar
  31. 31.
    Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications, Ed. by J. H. Fendle (Wiley-VCH, Weinheim, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. E. Bykova
    • 1
  • V. S. Zhigalov
    • 1
  • V. G. Myagkov
    • 1
  • M. N. Volochaev
    • 1
    • 2
  • A. A. Matsynin
    • 1
  • G. N. Bondarenko
    • 3
  • G. S. Patrin
    • 1
    • 4
  1. 1.Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian University of Science and TechnologyKrasnoyarskRussia
  3. 3.Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  4. 4.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations