Advertisement

Physics of the Solid State

, Volume 60, Issue 8, pp 1635–1644 | Cite as

Photon Echo from Localized Excitons in Semiconductor Nanostructures

  • S. V. Poltavtsev
  • I. A. Yugova
  • I. A. Akimov
  • D. R. Yakovlev
  • M. Bayer
Optical Properties
  • 17 Downloads

Abstract

An overview on photon echo spectroscopy under resonant excitation of the exciton complexes in semiconductor nanostructures is presented. The use of four-wave-mixing technique with the pulsed excitation and heterodyne detection allowed us to measure the coherent response of the system with the picosecond time resolution. It is shown that, for resonant selective pulsed excitation of the localized exciton complexes, the coherent signal is represented by the photon echoes due to the inhomogeneous broadening of the optical transitions. In case of resonant excitation of the trions or donor-bound excitons, the Zeeman splitting of the resident electron ground state levels under the applied transverse magnetic field results in quantum beats of photon echo amplitude at the Larmor precession frequency. Application of magnetic field makes it possible to transfer coherently the optical excitation into the spin ensemble of the resident electrons and to observe a long-lived photon echo signal. The described technique can be used as a high-resolution spectroscopy of the energy splittings in the ground state of the system. Next, we consider the Rabi oscillations and their damping under excitation with intensive optical pulses for the excitons complexes with a different degree of localization. It is shown that damping of the echo signal with increase of the excitation pulse intensity is strongly manifested for excitons, while on trions and donor-bound excitons this effect is substantially weaker.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Kh. Kopvillem and V. R. Nagibarov, Fiz. Met. Metalloved. 15, 313 (1963).Google Scholar
  2. 2.
    N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev. Lett. 13, 567 (1964).ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Wiersma and K. Duppen, Science (Washington, DC, U. S.) 237, 1147 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    D. S. Chemla and J. Shah, Nature (London, U.K.) 411, 549 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Samartsev, Laser Phys. 20, 383 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photon. 3, 706 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Phys. Rev. Lett. 64, 792 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    D. G. Steel and S. T. Cundiff, Laser Phys. 12, 1135 (2002).Google Scholar
  9. 9.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett. 87, 133603 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    A. Zrenner, S. Beham, E. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, Nature (London, U.K.) 418, 612 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1997), Chap.7.CrossRefGoogle Scholar
  13. 13.
    M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    M. Dyakonov, Spin Physics in Semiconductors (Springer, Berlin, 2008).CrossRefGoogle Scholar
  15. 15.
    A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, Science (Washington, DC, U.S.) 313, 341 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    S. G. Carter, Z. Chen, and S. T. Cundiff, Phys. Rev. B 76, 201308 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London, U.K.) 456, 218 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    I. Broser, B. Lummer, R. Heitz, and A. Hoffmann, J. Cryst. Growth 138, 809 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    D. Brinkmann, J. Kudrna, P. Gilliot, B. Hönerlage, A. Arnoult, J. Cibert, and S. Tatarenko, Phys. Rev. B 60, 4474 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    G. Moody, I. A. Akimov, H. Li, R. Singh, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, M. Bayer, and S. T. Cundiff, Phys. Rev. Lett. 112, 097401 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    F. Fras, Q. Mermillod, G. Nogues, C. Hoarau, C. Schneider, M. Kamp, S. Höfling, W. Langbein, and J. Kasprzak, Nat. Photon. 10, 155 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    L. Langer, S. V. Poltavtsev, I. A. Yugova, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, J. Kossut, I. A. Akimov, and M. Bayer, Phys. Rev. Lett. 109, 157403 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    L. Langer, S. V. Poltavtsev, I. A. Yugova, M. Salewski, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, I. A. Akimov, and M. Bayer, Nat. Photon. 8, 851 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    M. Salewski, S. V. Poltavtsev, I. A. Yugova, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, I. A. Akimov, T. Meier, and M. Bayer, Phys. Rev. X 7, 031030 (2017).Google Scholar
  25. 25.
    S. V. Poltavtsev, M. Reichelt, I. A. Akimov, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, T. Meier, and M. Bayer, Phys. Rev. B 96, 075306 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    S. V. Poltavtsev, A. N. Kosarev, I. A. Akimov, D. R. Yakovlev, S. Sadofev, J. Puls, S. P. Hoffmann, M. Albert, C. Meier, T. Meier, and M. Bayer, Phys. Rev. B 96, 035203 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    S. V. Poltavtsev, M. Salewski, Yu. V. Kapitonov, I. A. Yugova, I. A. Akimov, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, A. V. Kavokin, and M. Bayer, Phys. Rev. B 93, 121304(R) (2016).ADSCrossRefGoogle Scholar
  28. 28.
    M. Salewski, S. V. Poltavtsev, Yu. V. Kapitonov, J. Vondran, D. R. Yakovlev, C. Schneider, M. Kamp, S. Höfling, R. Oulton, I. A. Akimov, A. V. Kavokin, and M. Bayer, Phys. Rev. B 95, 035312 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Sirenko, T. Ruf, M. Cardona, D. R. Yakovlev, W. Ossau, A. Waag, and G. Landwehr, Phys. Rev. B 56, 2114 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    E. A. Zhukov, D. R. Yakovlev, M. Bayer, M. M. Glazov, E. L. Ivchenko, G. Karczewski, T. Wojtowicz, and J. Kossut, Phys. Rev. B 76, 205310 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    V. V. Samartsev, R. G. Usmanov, G. M. Ershov, and V. Sh. Khamidullin, Sov. Phys. JETP 47, 1030 (1978).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Poltavtsev
    • 1
    • 2
  • I. A. Yugova
    • 2
  • I. A. Akimov
    • 1
    • 3
  • D. R. Yakovlev
    • 1
    • 3
  • M. Bayer
    • 1
    • 3
  1. 1.Experimentelle Physik 2Technische Universität DortmundDortmundGermany
  2. 2.Spin Optics LaboratorySt. Petersburg State UniversitySt. Petersburg, PeterhofRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations