Advertisement

Physics of the Solid State

, Volume 60, Issue 7, pp 1439–1446 | Cite as

Intercalation of Iron Atoms under Graphene Formed on Silicon Carbide

  • M. V. Gomoyunova
  • G. S. Grebenyuk
  • V. Yu. Davydov
  • I. A. Ermakov
  • I. A. Eliseyev
  • A. A. Lebedev
  • S. P. Lebedev
  • E. Yu. Lobanova
  • A. N. Smirnov
  • D. A. Smirnov
  • I. I. Pronin
Surface Physics and Thin Films
  • 19 Downloads

Abstract

The intercalation of iron under a graphene monolayer grown on 4H-SiC(0001) is studied. The experiments have been carried out in situ under conditions of ultrahigh vacuum by low-energy electron diffraction, high-energy-resolution photoelectron spectroscopy using synchrotron radiation, and near carbon K-edge X-ray absorption spectroscopy. The deposited iron film thicknesses have been varied within 0.1–2 nm and the sample temperatures from room temperature to 700°C. It is shown that the intercalation process begins at temperatures higher than ~350°C. In this case, it is found that intercalated iron atoms are localized not only between graphene and a buffer layer coating SiC, but also under the buffer layer itself. The optimal conditions of the intercalation are realized in the range 400–500°C, because, at higher temperatures, the system becomes unstable due to the chemical interaction of the intercalated iron with silicon carbide. The inertness of the intercalated films to action of oxygen is demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, et al., Nanoscale 7, 4598 (2015).CrossRefADSGoogle Scholar
  2. 2.
    K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater. 8, 203 (2009).CrossRefADSGoogle Scholar
  3. 3.
    G. R. Yazdi, T. Iakimov, and R. Yakimova, Crystals 6, 53 (2016).CrossRefGoogle Scholar
  4. 4.
    O. Vilkov, A. Fedorov, D. Usachev, L. V. Yashina, A. V. Generalov, K. Borygina, N. I. Verbitskij, A. Grüneis, and D. I. Vyalikh, Nat. Sci. Rep. 3, 2168 (2013).CrossRefADSGoogle Scholar
  5. 5.
    R. Decker, J. Brede, N. Atodiresei, V. Caciuc, S. Blugel, and R. Wiesendanger, Phys. Rev. B 87, 041403 (2013).CrossRefADSGoogle Scholar
  6. 6.
    E. A. Soares, G. J. P. Abreu, S. S. Carara, R. Paniago, V. E. de Carvalho, and H. Chacham, Phys. Rev. B 88, 165410 (2013).CrossRefADSGoogle Scholar
  7. 7.
    H. Vita, S. Bottcher, P. Leicht, K. Horn, A. B. Shick, and F. Maca, Phys. Rev. B 90, 165432 (2014).CrossRefADSGoogle Scholar
  8. 8.
    D. Pacile, S. Lisi, I. di Bernardo, M. Papagno, L. Ferrari, M. Pisarra, M. Caputo, S. K. Mahatha, P. M. Sheverdyaeva, P. Moras, P. Lacovig, S. Lizzit, A. Baraldi, M. G. Betti, and C. Carbone, Phys. Rev. B 90, 195446 (2014).CrossRefADSGoogle Scholar
  9. 9.
    S. J. Sung, J. W. Yang, P. R. Lee, J. G. Kim, M. T. Ryu, H. M. Park, G. Lee, C. C. Hwang, Kwang. S. Kim, J. S. Kim, and J. W. Chung, Nanoscale 6, 382 (2014).CrossRefGoogle Scholar
  10. 10.
    M. Cattelan, G. W. Peng, E. Cavaliere, L. Artiglia, A. Barinov, L. T. Roling, M. Favaro, I. Píš, S. Nappini, E. Magnano, F. Bondino, L. Gavioli, S. Agnoli, M. Mavrikakis, and G. Granozzi, Nanoscale 7, 2450 (2015).CrossRefADSGoogle Scholar
  11. 11.
    R. Friedrich, V. Caciuc, N. Atodiresei, and S. Blügel, Phys. Rev. B 93, 220406(R) (2016).CrossRefADSGoogle Scholar
  12. 12.
    A. D. Vu, J. Coraux, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Rougemaille, Nat. Sci. Rep. 6, 24783 (2016).CrossRefADSGoogle Scholar
  13. 13.
    G. S. Grebenyuk, O. Yu. Vilkov, A. G. Rybkin, M. V. Gomoyunova, B. V. Senkovskiy, D. Yu. Usachov, D. V. Vyalikh, S. L. Molodtsov, and I. I. Pronin, Appl. Surf. Sci. 392, 715 (2017).CrossRefADSGoogle Scholar
  14. 14.
    I. I. Pronin, S. M. Dunaevskii, E. Yu. Lobanova, and E. K. Mikhailenko, Phys. Solid State 59, 2063 (2017).CrossRefADSGoogle Scholar
  15. 15.
    M. V. Gomoyunova, G. S. Grebenyuk, D. A. Smirnov, and I. I. Pronin, Phys. Solid State 59, 2053 (2017).CrossRefADSGoogle Scholar
  16. 16.
    N. V. Agrinskaya, V. A. Berezovets, V. I. Kozub, I. S. Kotousova, A. A. Lebedev, S. P. Lebedev, and A. A. Sitnikova, Semiconductors 47, 301 (2013).CrossRefADSGoogle Scholar
  17. 17.
    A. A. Lebedev, S. P. Lebedev, S. N. Novikov, V. Yu. Davydov, A. N. Smirnov, D. P. Litvin, Yu. N. Makarov, and V. S. Levitskii, Tech. Phys. 61, 453 (2016).CrossRefGoogle Scholar
  18. 18.
    V. Yu. Davydov, D. Yu. Usachov, S. P. Lebedev, A. N. Smirnov, V. S. Levitskii, I. A. Eliseev, P. A. Alekseev, M. S. Dunaevskii, O. Yu. Vilkov, A. G. Rybkin, and A. A. Lebedev, Semiconductors 51, 1072 (2017).CrossRefADSGoogle Scholar
  19. 19.
    C. Riedl, C. Coletti, and U. Starke, J. Phys. D 43, 374009 (2010).CrossRefGoogle Scholar
  20. 20.
    K. V. Emtsev, F. Speck, T. Seyller, and L. Ley, Phys. Rev. B 77, 155303 (2009).CrossRefADSGoogle Scholar
  21. 21.
    M. V. Gomoyunova and I. I. Pronin, Tech. Phys. 55, 588 (2010).CrossRefGoogle Scholar
  22. 22.
    M. V. Gomoyunova, G. S. Grebenyuk, K. M. Popov, and I. I. Pronin, Tech. Phys. 58, 852 (2013).CrossRefGoogle Scholar
  23. 23.
    A. C. Ferrari and D. M. Basko, Nat. Nanotech. 8, 235 (2013).CrossRefADSGoogle Scholar
  24. 24.
    Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Phys. Rev. B 77, 115416 (2008).CrossRefADSGoogle Scholar
  25. 25.
    J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).CrossRefADSGoogle Scholar
  26. 26.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotech. 3, 210 (2008).CrossRefGoogle Scholar
  27. 27.
    F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Döorr, Y. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010).CrossRefADSGoogle Scholar
  28. 28.
    R. Beams, L. G. Cançado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 (2015).ADSGoogle Scholar
  29. 29.
    L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Gomoyunova
    • 1
  • G. S. Grebenyuk
    • 1
  • V. Yu. Davydov
    • 1
  • I. A. Ermakov
    • 2
  • I. A. Eliseyev
    • 3
  • A. A. Lebedev
    • 1
  • S. P. Lebedev
    • 1
    • 2
  • E. Yu. Lobanova
    • 1
  • A. N. Smirnov
    • 1
    • 2
  • D. A. Smirnov
    • 3
    • 4
  • I. I. Pronin
    • 1
    • 2
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technology, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Leibniz Institute for Solid State Physics and Material ResearchDresden University of TechnologyDresdenGermany

Personalised recommendations