Advertisement

Physics of the Solid State

, Volume 60, Issue 5, pp 975–980 | Cite as

Friction-Induced Changes in the Surface Structure of Basalt and Granite

  • V. I. VettegrenEmail author
  • K. Arora
  • A. V. Ponomarev
  • R. I. Mamalimov
  • I. P. Shcherbakov
  • V. B. Kulik
Mechanical Properties, Physics of Strength, and Plasticity
  • 12 Downloads

Abstract

Friction-induced changes in the structure of the surface layer of basalt and granite samples extracted from a well in the triggered seismicity zone in the Koyna–Warna region, India, have been studied by infrared, Raman, and photoluminescence spectroscopy. It has been found that friction leads to a partial degradation of quartz, albite, and clinopyroxenes crystals. Instead of these crystals, a thin layer of a mineral with a low coefficient of friction—kaolinite—is formed on the surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Byerlee, Pure Appl. Geophys. 116, 615 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    J. H. Dieterich, J. Geophys. Res. B 83, 3940 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. I. Vettegren’, V. B. Kulik, and R. I. Mamalimov, Fiz. Zemli, Nos. 9–10, 17 (2012).Google Scholar
  4. 4.
    G. A. Sobolev, V. I. Vettegren’, V. V. Ruzhich, L. A. Ivanova, R. I. Mamalimov, and I. P. Shcherbakov, Vulkanol. Seismol., No. 3, 3 (2015).Google Scholar
  5. 5.
    G. A. Sobolev, V. I. Vettegren’, V. V. Ruzhich, S. M. Kireenkova, A. I. Smul’skaya, R. I. Mamalimov, and V. B. Kulik, Geofiz. Issled. 1 (4), 5 (2015).Google Scholar
  6. 6.
    G. A. Sobolev, V. I. Vettegren’, S. M. Kireenkova, V. B. Kulik, R. I. Mamalimov, Yu. A. Morozov, A. I. Smul’skaya, and I. P. Shcherbakov, Nanocrystals in Rocks (GEOS, Moscow, 2016) [in Russian].Google Scholar
  7. 7.
    V. I. Vettegren, A. V. Ponomarev, I. P. Shcherbakov, R. I. Mamalimov, V. B. Kulik, and A. V. Patonin, Phys. Solid State 59, 588 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Vettegren’, R. I. Mamalimov, V. B. Kulik, A. V. Patonin, A. V. Ponomarev, G. A. Sobolev, and I. P. Shcherbakov, Phys. Solid State 59, 1340 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Vettegren’, A. V. Ponomarev, K. Arora, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 59, 1345 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Vettegren’, A. V. Ponomarev, G. A. Sobolev, V. B. Kulik, R. I. Mamalimov, I. P. Shcherbakov, and A. Ya. Bashkarev, Phys. Solid State 60, 129 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Vettegren’, V. S. Kuksenko, and I. P. Shcherbakov, Fiz. Zemli, No. 5, 134 (2016).Google Scholar
  12. 12.
    V. I. Vettegren’, G. A. Sobolev, A. V. Ponomarev, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 59, 955 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Vettegren’, A. V. Ponomarev, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 59, 1580 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Vettegren, A. V. Ponomarev, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 59, 2286 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).Google Scholar
  17. 17.
    J. J. Freeman, A. Wang, K. E. Kuebler, B. L. Jolliff, and L. A. Haskin, Canad. Mineral. 46, 1477 (2008).CrossRefGoogle Scholar
  18. 18.
    E. Huang, C. H. Chen, T. Huang, E. H. Lin, and Ji-An Xu, Am. Mineral. 85, 473 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    K. De Boer, A. P. J. Jansen, R. A. van Santen, and G. W. Parker, Phys. Rev. B 54, 826 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    L. R. Frost, Glays Glay Miner. 43, 191 (1995).ADSGoogle Scholar
  21. 21.
    F. Laves and S. Hafner, Z. Kristallogr. 108, 52 (1956).CrossRefGoogle Scholar
  22. 22.
    D. B. Stewart and T. L. Wright, Bull. Soc. Mineral. Crystallogr. 97, 356 (1974).Google Scholar
  23. 23.
    P. Makreski, G. Jovanovski, A. Gajović, T. Biljan, D. Angelovski, and R. Radojko Jaćimović, J. Mol. Struct. 788, 102 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    N. V. Chukanov, Infrared Spectra of Mineral Species (Springer, Dordrecht, 2014).CrossRefGoogle Scholar
  25. 25.
    B. J. Saikia and P. Gopalakrishnarao, J. Mod. Phys. 1, 206 (2010).CrossRefGoogle Scholar
  26. 26.
    K. A. H. Saeeda, K. A. Kassima, N. Z. M. Yunusa, and H. Nurb, J. Teknolog. 72 (3), 83 (2015).Google Scholar
  27. 27.
    W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).ADSCrossRefGoogle Scholar
  28. 28.
    J. Etchepare, M. Merian, and P. J. Kaplan, Chem. Phys. 60, 1873 (1974).ADSGoogle Scholar
  29. 29.
    K. Iishi and H. Yamacuchi, Am. Mineral. 60, 907 (1975).Google Scholar
  30. 30.
    J. Götze, Microsc. Microanal. 18, 1270 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    D. J. Huntley, D. I. Godfrey-Smith, and M. L. W. Thewalt, Nature (London, U.K.) 313, 105 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    D. J. Huntley, D. I. Godfrey-Smith, and E. H. Haskell, Nucl. Tracks Rad. Meas. 18, 127 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Vettegren
    • 1
    Email author
  • K. Arora
    • 2
  • A. V. Ponomarev
    • 3
  • R. I. Mamalimov
    • 1
  • I. P. Shcherbakov
    • 1
  • V. B. Kulik
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.CSIR National Geophysical Research InstituteHyderabadIndia
  3. 3.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations