Advertisement

Physics of the Solid State

, Volume 60, Issue 5, pp 1029–1034 | Cite as

Unoccupied Electron States and the Formation of Interface between Films of Dimethyl-Substituted Thiophene–Phenylene Coolygomers and Oxidized Silicon Surface

  • A. S. Komolov
  • E. F. Lazneva
  • N. B. Gerasimova
  • Yu. A. Panina
  • G. D. Zashikhin
  • S. A. Pshenichnyuk
  • O. V. Borshchev
  • S. A. Ponomarenko
  • B. Handke
Polymers

Abstract

The unoccupied electron states and the boundary potential barrier during deposition of ultrathin films of dimethyl-substituted thiophene–phenylene coolygomers of the type of CH3–phenylene–thiophene–thiophene–phenylene–CH3 (CH3–PTTP–CH3) on an oxidized silicon surface have been studied. The electronic characteristics have been measured in the energy range from 5 to 20 eV above the Fermi level using total current spectroscopy (TCS). The structure of the CH3–PTTP–CH3 film surfaces has been studied by atomic force microscopy (AFM), and the atomic compositions of the films have been studied by X-ray photoelectron spectroscopy (XPS). The changes in the maximum intensities measured by the TCS method obtained from the deposited CH3–PTTP–CH3 film and from the substrate during increasing in the organic coating thickness to 6 nm is discussed. The formation of the boundary potential barrier in the n-Si/SiO2/CH3–PTTP–CH3 is accompanied by the decrease in the surface work function from 4.2 ± 0.1 to 4.0 ± 0.1 eV as the organic coating thickness increases to 3 nm. The ratio of atomic concentrations C: S in the CH3–PTTP–CH3 films well corresponds to the chemical formula of CH3–PTTP–CH3 molecules. The roughness of the CH3–PTTP–CH3 coating surface was not higher than 10 nm on the ~10 × 10 μm areas as the total CH3–PTTP–CH3-layer thickness was about 100 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Chan, E.-G. Kim, J. L. Bredas, and A. Kahn, Adv. Funct. Mater. 16, 831 (2006).CrossRefGoogle Scholar
  2. 2.
    L. Grzadziel, M. Krzywiecki, G. Genchev, and A. Erbe, Synth. Met. 223, 199 (2017).CrossRefGoogle Scholar
  3. 3.
    D. Ozdal, N. P. Aydinlik, J. B. Bodapati, and H. Icil, Photochem. Photobiol. Sci. 16, 262 (2017).CrossRefGoogle Scholar
  4. 4.
    A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 212–213, 493 (2003).Google Scholar
  5. 5.
    V. M. Kornilov, A. N. Lachinov, D. D. Karamov, I. R. Nabiullin, and Yu. V. Kul’velis, Phys. Solid State 58, 1065 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    T. Sengoku, T. Yamao, and S. Hotta, J. Non-Cryst. Solids 358, 2525 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    F. Sasaki, Y. Kawaguchi, H. Mochizuki, S. Haraichi, T. Ishitsuka, T. Ootsuka, T. Tomie, S. Watanabe, Y. Shimoi, T. Yamao, and S. Hotta, Mol. Cryst. Liq. Cryst. 620, 153 (2015).CrossRefGoogle Scholar
  8. 8.
    M. S. Kazantsev, V. G. Konstantinov, D. I. Dominskiy, V. V. Bruevich, V. A. Postnikov, Y. N. Luponosov, V. A. Tafeenko, N. M. Surin, S. A. Ponomarenko, and D. Y. Paraschuk, Synth. Met. 232, 60 (2017).CrossRefGoogle Scholar
  9. 9.
    V. A. Postnikov, Y. I. Odarchenko, A. V. Iovlev, V. V. Bruevich, A. Y. Pereverzev, L. G. Kudryashova, V. V. Sobornov, L. Vidal, D. Chernyshov, Y. N. Luponosov, O. V. Borshchev, N. M. Surin, S. A. Ponomarenko, D. A. Ivanov, and D. Y. Paraschuk, Cryst. Growth Des. 14, 1726 (2014).CrossRefGoogle Scholar
  10. 10.
    L. G. Kudryashova, M. S. Kazantsev, V. A. Postnikov, V. V. Bruevich, Y. N. Luponosov, N. M. Surin, O. V. Borshchev, S. A. Ponomarenko, M. S. Pshenichnikov, and D. Y. Paraschuk, ACS Appl. Mater. Interfaces 8, 10088 (2016).CrossRefGoogle Scholar
  11. 11.
    Y. Yomogida, T. Takenobu, H. Shimotani, K. Sawabe, S. Z. Bisri, T. Yamao, S. Hotta, and Y. Iwasa, Appl. Phys. Lett. 97, 173301 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. N. Aleshin, I. P. Shcherbakov, A. S. Komolov, V. N. Petrov, and I. N. Trapeznikova, Org. Electron. 16, 186 (2015).CrossRefGoogle Scholar
  13. 13.
    A. N. Aleshin, I. P. Shcherbakov, E. V. Gushchina, L. B. Matyushkin, and V. A. Moshnikov, Org. Electron. 50, 213 (2017).CrossRefGoogle Scholar
  14. 14.
    A. N. Aleshin, I. P. Shcherbakov, I. N. Trapeznikova, and V. N. Petrov, Phys. Solid State 59, 2486 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kawaguchi, F. Sasaki, H. Mochizuki, T. Ishitsuka, T. Tomie, T. Ootsuka, S. Watanabe, Y. Shimoi, T. Yamao, and S. Hotta, J. Appl. Phys. 113, 083710 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).CrossRefGoogle Scholar
  17. 17.
    A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, and A. Modelli, Rapid Commun. Mass Spectrom. 29, 910 (2015).CrossRefGoogle Scholar
  19. 19.
    N. L. Asfandiarov, S. A. Pshenichnyuk, E. P. Nafikova, A. S. Vorob’ev, Y. N. Elkin, A. Modelli, and A. S. Komolov, Int. J. Mass Spectrom. 412, 26 (2017).CrossRefGoogle Scholar
  20. 20.
    Y. Tong, F. Nicolas, S. Kubsky, H. Oughaddou, F. Sirotti, V. Esaulov, and A. Bendounan, J. Phys. Chem. C 121, 5050 (2017).CrossRefGoogle Scholar
  21. 21.
    D. I. Dominskiy, A. Yu. Sosorev, T. V. Rybalova, N. I. Sorokina, O. A. Alekseeva, A. V. Andrianova, I. A. Gvozdkova, O. V. Borshchev, S. A. Ponomarenko, and D. Yu. Paraschuk, in Proceedings of the 13th International Conference on Organic Electronics ICOE–2017 (Printeltech, Moscow, 2017), p. 96.Google Scholar
  22. 22.
    B. Handke, L. Klita, and W. Niemiec, Surf. Sci. 666, 70 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    M. K. Rabinal, Appl. Surf. Sci. 382, 41 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57, 2373 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, M. V. Partyka, A. P. Luchechko, and L. I. Yarytska, Nanoscale Res. Lett. 11, 43 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd ed., Ed. by J. Chastain (Perkin Elmer, Eden Prairie, 1992).Google Scholar
  27. 27.
    A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 244, 573 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    I. Bartos, Progr. Surf. Sci. 59, 197 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    A. S. Komolov, P. J. Møller, Y. G. Aliaev, E. F. Lazneva, S. A. Akhremchik, F. S. Kamounah, J. Mortenson, and K. Schaumburg, J. Mol. Struct. 744–747, 145 (2005).CrossRefGoogle Scholar
  31. 31.
    A. S. Komolov, Y. M. Zhukov, E. F. Lazneva, A. N. Aleshin, S. A. Pshenichnuk, N. B. Gerasimova, Yu. A. Panina, G. D. Zashikhin, and A. V. Baramygin, Mater. Des. 113, 319 (2017).CrossRefGoogle Scholar
  32. 32.
    A. S. Komolov, K. Schaumburg, P. J. Møller, and V. V. Monakhov, Appl. Surf. Sci. 142, 591 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    T. R. Dillingham, D. M. Cornelison, and S. W. Townsend, J. Vac. Sci. Technol. A 14, 1494 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    A. S. Komolov, E. F. Lazneva, Yu. M. Zhukov, S.A. Pshenichnyuk, E. V. Agina, D. I. Dominskii, D. S. Anisimov, and D. Yu. Parashchuk, Phys. Solid State 59, 2491 (2017).ADSCrossRefGoogle Scholar
  35. 35.
    Y. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 2003).Google Scholar
  36. 36.
    T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).CrossRefGoogle Scholar
  38. 38.
    M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.-L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).CrossRefGoogle Scholar
  39. 39.
    I. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Komolov
    • 1
  • E. F. Lazneva
    • 1
  • N. B. Gerasimova
    • 1
  • Yu. A. Panina
    • 1
  • G. D. Zashikhin
    • 1
  • S. A. Pshenichnyuk
    • 2
  • O. V. Borshchev
    • 3
  • S. A. Ponomarenko
    • 3
    • 4
  • B. Handke
    • 5
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Molecules and CrystalsSubdivision of the Ufa Federal Research Centre of the Russian Academy of SciencesUfa, BashkortostanRussia
  3. 3.Enikopolov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Faculty of Material Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations