Advertisement

Physics of the Solid State

, Volume 60, Issue 4, pp 821–825 | Cite as

Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene

  • I. Yu. Dolinskii
  • K. P. KatinEmail author
  • K. S. Grishakov
  • V. S. Prudkovskii
  • N. I. Kargin
  • M. M. Maslov
Graphenes
  • 20 Downloads

Abstract

This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, and J. Zhang, Energy Environ. Sci. 7, 1564 (2014).CrossRefGoogle Scholar
  3. 3.
    G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, J. Ind. Eng. Chem. 21, 11 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Higgins, P. Zamani, A. Yu, and Z. Chen, Energy Environ. Sci. 9, 357 (2016).CrossRefGoogle Scholar
  5. 5.
    M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).CrossRefGoogle Scholar
  6. 6.
    A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rev. B 95, 045119 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 57, 205 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    S. G. Rudi, R. Faez, and M. K. Moravvej-Farshi, Superlatt. Microstruct. 100, 739 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Belenkov and A. E. Kochengin, Phys. Solid State 57, 2126 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    C. Punckt, F. Muckel, S. Wolff, I. A. Aksay, and C. A. Chavarin, Appl. Phys. Lett. 102, 023114 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    X. Tian, S. Sarkar, A. Pekker, M. L. Moser, I. Kalinina, E. Bekyarova, M. E. Itkis, and R. C. Haddon, Carbon 72, 82 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Wang, T. Maiyalagan, and X. Wang, ACS Catal. 2, 781 (2012).CrossRefGoogle Scholar
  13. 13.
    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Adv. Mater. 21, 4726 (2009).Google Scholar
  15. 15.
    M. Borghei, I. Azcune, P. M Carrasco, J. Sainio, E. Kauppinen, and V. Ruiz, Int. J. Hydrogen Energy 39, 12749 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Fujimoto and S. Saito, Phys. Rev. B 84, 245446 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    M. Pizzochero, O. Leenaerts, B. Partoens, R. Martinazzo, and F. M. Peeters, J. Phys.: Condens. Matter 27, 425502 (2015).ADSGoogle Scholar
  18. 18.
    Y. Wang, Y. Shen, and S. Zhu, Catal. Commun. 94, 29 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. Tian, Y. Ye, X. Wang, S. Peng, Z. Wei, X. Zhang, and W. Liu, Appl. Catal. A 529, 127 (2017).CrossRefGoogle Scholar
  20. 20.
    M. Wang, Y. Huang, X. Chen, K. Wang, H. Wu, N. Zhang, and H. Fu, J. Alloys Compd. 691, 407 (2017).CrossRefGoogle Scholar
  21. 21.
    K. Gopalakrishnan, K. Moses, A. Govindaraj, and C. N. R. Rao, Solid State Commun. 175–176, 43 (2013).CrossRefGoogle Scholar
  22. 22.
    E. Rangel and E. Sansores, Int. J. Hydrogen Energy 39, 6558 (2014).CrossRefGoogle Scholar
  23. 23.
    Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, and B.-H. Han, ACS Appl. Mater. Interfaces 7, 1431 (2015).CrossRefGoogle Scholar
  24. 24.
    S. A. Siadati, E. Vessally, A. Hosseinian, and L. Edjlali, Synth. Met. 220, 606 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Chen, C. Hou, D. Huo, J. Bao, H. Fa, and C. Shen, Biosens. Bioelectron. 85, 684 (2016).CrossRefGoogle Scholar
  26. 26.
    L.-H. Pan, S.-H. Kuo, T.-Y. Lin, C.-W. Lin, P.-Y. Fang, and H.-W. Yang, Biosens. Bioelectron. 89, 598 (2017).CrossRefGoogle Scholar
  27. 27.
    V. Tozzini and V. Pellegrini, Phys. Chem. Chem. Phys. 15, 80 (2013).CrossRefGoogle Scholar
  28. 28.
    S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    Y. C. Cheng, T. P. Kaloni, Z. Y. Zhu, and U. Schwingenschlögl, Appl. Phys. Lett. 101, 073110 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    V. S. Prudkovskiy, K. P. Katin, M. M. Maslov, P. Puech, R. Yakimova, and G. Deligeorgis, Carbon 109, 221 (2016).CrossRefGoogle Scholar
  31. 31.
    F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang, and H. Xu, J. Phys. Chem. C 112, 12003 (2008).CrossRefGoogle Scholar
  32. 32.
    H. Y. Mao, S. Laurent, W. Chen, O. Akhavan, M. Imani, A. A. Ashkarran, and M. Mahmoudi, Chem. Rev. 113, 3407 (2013).CrossRefGoogle Scholar
  33. 33.
    V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, and K. S. Kim, Chem. Rev. 112, 6156 (2012).CrossRefGoogle Scholar
  34. 34.
    D. Bitounis, H. Ali-Boucetta, B. H. Hong, D.-H. Min, and K. Kostarelos, Adv. Mater. 25, 2258 (2013).CrossRefGoogle Scholar
  35. 35.
    N.-F. Chiu, S.-Y. Fan, C.-D. Yang, and T.-Y. Huang, Biosens. Bioelectron. 89, 370 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. You, J. Deng, X. Tan, N. Gorjizadeh, M. Yoshimura, S. C. Smith, V. Sahajwalla, and R. K. Joshi, Phys. Chem. Chem. Phys. 19, 6051 (2017).CrossRefGoogle Scholar
  37. 37.
    S.-M. Choi, S.-H. Jhi, and Y.-W. Son, Phys. Rev. B 81, 081407 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    R. A. Brazhe, A. I. Kochaev, and R. M. Meftakhutdinov, Phys. Solid State 59, 344 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    B. Liu, C. D. Reddy, J. Jiang, J. A. Baimova, and S. V. Dmitriev, Appl. Phys. Lett. 101, 211909 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    S. V. Dmitriev, J. A. Baimova, A. V. Savin, and Y. S. Kivshar, Comput. Mater. Sci. 53, 194 (2012).CrossRefGoogle Scholar
  41. 41.
    D. W. Boukhvalov and Y.-W. Son, Chem. Phys. Chem. 13, 1463 (2012).CrossRefGoogle Scholar
  42. 42.
    J.-H. Liao, Y.-J. Zhao, and X.-B. Yang, Int. J. Hydrogen Energy 40, 12063 (2015).CrossRefGoogle Scholar
  43. 43.
    X. Wei, L. Mao, R. A. Soler-Crespo, J. T. Paci, J. Huang, S. T. Nguyen, and H. D. Espinosa, Nat. Commun. 6, 8029 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    P. L. de Andres and J. A. Vergés, Appl. Phys. Lett. 93, 171915 (2008).ADSCrossRefGoogle Scholar
  45. 45.
    K. P. Katin and M. M. Maslov, Russ. J. Phys. Chem. B 5, 770 (2011).CrossRefGoogle Scholar
  46. 46.
    M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).CrossRefGoogle Scholar
  47. 47.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).ADSCrossRefGoogle Scholar
  48. 48.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 1705 (2016).ADSCrossRefGoogle Scholar
  49. 49.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 57, 1477 (2015).ADSCrossRefGoogle Scholar
  50. 50.
    L. A. Openov and A. I. Podlivaev, Semiconductors 45, 633 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    L. A. Openov, A. I. Podlivaev, and M. M. Maslov, Phys. Lett. A 376, 3146 (2012).ADSCrossRefGoogle Scholar
  53. 53.
    K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).ADSCrossRefGoogle Scholar
  54. 54.
    N. N. Degtyarenko, K. P. Katin, and M. M. Maslov, Phys. Solid State 56, 1467 (2014).ADSCrossRefGoogle Scholar
  55. 55.
    B. Saha and P. K. Bhattacharyya, Comput. Theor. Chem. 1086, 45 (2016).CrossRefGoogle Scholar
  56. 56.
    K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. Lett. A 381, 2686 (2017).ADSCrossRefGoogle Scholar
  57. 57.
    S. Casolo, O. M. Lovvik, R. Martinazzo, and G. F. Tantardini, J. Chem. Phys. 130, 054704 (2009).ADSCrossRefGoogle Scholar
  58. 58.
    S. Yu. Davydov, Phys. Solid State 59, 845 (2017).ADSCrossRefGoogle Scholar
  59. 59.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Yu. Dolinskii
    • 1
  • K. P. Katin
    • 1
    • 2
    Email author
  • K. S. Grishakov
    • 1
    • 2
  • V. S. Prudkovskii
    • 2
    • 3
  • N. I. Kargin
    • 1
  • M. M. Maslov
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.University of CreteHeraklionGreece
  3. 3.Research Institute for the Development of Scientific and Educational Potential of YouthMoscowRussia

Personalised recommendations