Physics of the Solid State

, Volume 60, Issue 3, pp 581–591 | Cite as

Comparative X-Ray Absorption Analysis of the Spectrum of Vacant Electronic States in Cobalt and Nickel Tetraphenylporphyrin Complexes

  • G. I. Svirskiy
  • A. V. Generalov
  • A. Yu. Klyushin
  • K. A. Simonov
  • S. A. Krasnikov
  • N. A. Vinogradov
  • A. L. Trigub
  • Ya. V. Zubavichus
  • A. B. Preobrazhenski
  • A. S. VinogradovEmail author
Low-Dimensional Systems


The energy distributions and the properties of the lower vacant electronic states in cobalt and nickel tetraphenylporphyrin complexes CoTPP and NiTPP are studied by X-ray absorption spectroscopy. Quasimolecular analysis of the experimental absorption spectra measured in the region of the 2p and 1s ionization thresholds of complexing metal atoms, as well as the 1s thresholds of ligand atoms (nitrogen and carbon), is based on the comparison of the corresponding spectra with each other and with the spectra of the simplest nickel porphyrin NiP. It has been established that, despite a general similarity of the spectra of nitrogen and carbon in CoTPP and NiTPP, the fine structure of the 2p and 1s absorption spectra of cobalt and nickel atoms are radically different. The observed differences in the spectra of cobalt and nickel are associated with the features of the energy distribution of vacant 3d electron states. The presence in CoTPP of the partially filled valence 3db2g molecular orbital (MO) results in the appearance in the cobalt spectra of a low-energy band, which is absent in the spectrum of nickel in NiTPP and leads to a doublet structure of transitions to b1g and e g MOs due to the exchange interaction between 3d electrons in partially filled 3db2g and 3db1g or 3de g MOs. The spectrum of vacant states in CoTPP differs from that in NiTPP also due to the smaller energy distance between 3db1g and e g MOs and the different positions of nonbonding MOs with the C2p character of the porphine ligand.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Porphyrin Handbook, Ed. by K. M. Kadish, K. M. Smith, and R. Guilard (Academic, San Diego, CA, 2000), Vols. 1–10.Google Scholar
  2. 2.
    J. P. Collman, R. Boulatov, C. J. Sunderland, and L. Fu, Chem. Rev. 104, 561 (2004).CrossRefGoogle Scholar
  3. 3.
    H. L. Anderson, Chem. Commun., 2323 (1999).Google Scholar
  4. 4.
    O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuiercheartaigh, Adv. Mater. 19, 2737 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Bhyrappa, J. K. Young, J. S. Moore, and K. S. Suslick, J. Am. Chem. Soc. 118, 5708 (1996).CrossRefGoogle Scholar
  6. 6.
    M. Ethirajan, Y. Chen, P. Joshi, and R. K. Pandey, Chem. Soc. Rev. 40, 340 (2011).CrossRefGoogle Scholar
  7. 7.
    D. Filippini, A. Alimelli, C. di Natale, R. Paolesse, A. D’Amico, and I. Lundström, Angew. Chem., Int. Ed. 45, 3800 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Yella, H.-S. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    Z. Liu, A. A. Yasseri, J. S. Lindsey, and D. F. Bocian, Science 302, 1543 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    W. Auwärter, K. Seufert, F. Klappenberger, J. Reichert, A. Weber-Bargioni, A. Verdini, D. Cvetko, M. Dell’Angela, L. Floreano, A. Cossaro, G. Bavdek, A. Morgante, A. P. Seitsonen, and J. V. Barth, Phys. Rev. B 81, 245403 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    L. Scudeiro, D. E. Barlow, and K. W. Hipps, J. Phys. Chem. B 104, 11899 (2000).CrossRefGoogle Scholar
  12. 12.
    L. Scudeiro, K. W. Hipps, and D. E. Barlow, J. Phys. Chem. B 107, 2903 (2003).CrossRefGoogle Scholar
  13. 13.
    L. G. Teugels, L. G. Avila-Bront, and S. J. Sibener, J. Phys. Chem. C 115, 2826 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Fatayer, R. G. A. Veiga, M. J. Prieto, E. Perim, R. Landers, R. H. Miwa, and A. de Siervo, Phys. Chem. Chem. Phys. 17, 18344 (2015).CrossRefGoogle Scholar
  15. 15.
    T. Lukasczyk, K. Flechtner, L. R. Merte, N. Jux, F. Maier, J. M. Gottfried, and H.-P. Steinrück, J. Phys. Chem. C 111, 3090 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Weber-Bargioni, W. Auwärter, F. Klappenberger, J. Reichert, S. Lefrancois, T. Strunskus, C. Wölf, A. Schiffrin, Y. Pennec, and J. V. Barth, Chem. Phys. Chem. 9, 89 (2008).CrossRefGoogle Scholar
  17. 17.
    Y. Bai, M. Sekita, M. Schmid, T. Bischof, H.-P. Steinrück, and J. M. Gottfried, Phys. Chem. Chem. Phys. 12, 4336 (2010).CrossRefGoogle Scholar
  18. 18.
    J. M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, and H.-P. Steinrück, J. Am. Chem. Soc. 128, 5644 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Chen, X. Feng, L. Zhang, H. Ju, Q. Xu, J. Zhu, J. M. Gottfried, K. Ibrahim, H. Qian, and J. Wang, J. Phys. Chem. C 114, 9908 (2010).CrossRefGoogle Scholar
  20. 20.
    K. Diller, F. Klappenberger, M. Marschall, K. Hermann, A. Nefedov, Ch. Wöll, and J. V. Barth, J. Chem. Phys. 136, 014705 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    J. Stöhr, NEXAFS Spectroscopy, Springer Ser. Surf. Sci. 25, 1 (1992).CrossRefGoogle Scholar
  22. 22.
    S. Narioka, H. Ishii, Y. Ouchi, T. Yokayama, T. Ohta, and K. Seki, J. Phys. Chem. 99, 1332 (1995).CrossRefGoogle Scholar
  23. 23.
    L. X. Chen, W. J. H. Jäger, G. Jennings, D. J. Gosztola, A. Munkholm, and J. P. Hessler, Science 292, 262 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    T. Okajima, Y. Yamamoto, Y. Ouchi, and K. Seki, J. Electron Spectrosc. Relat. Phenom. 114–116, 849 (2001).CrossRefGoogle Scholar
  25. 25.
    M. P. de Jong, R. Friedlein, S. L. Sorensen, G. Öhrwall, W. Osikowicz, C. Tengsted, S. K. M. Jönsson, M. Fahlman, and W. R. Salaneck, Phys. Rev. B 72, 035448 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    N. Schmidt, R. Fink, and W. Hieringer, J. Chem. Phys. 133, 054703 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    S. A. Krasnikov, A. B. Preobrajenski, N. N. Sergeeva, M. M. Brzhezinskaya, M. A. Nesterov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, Chem. Phys. 332, 318 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    S. A. Krasnikov, N. N. Sergeeva, M. M. Brzhezinskaya, A. B. Preobrajenski, Y. N. Sergeeva, N. A. Vinogradov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, J. Phys.: Condens. Matter 20, 235207 (2008).ADSGoogle Scholar
  29. 29.
    G. I. Svirskiy, N. N. Sergeeva, S. A. Krasnikov, N. A. Vinogradov, Yu. N. Sergeeva, A. A. Cafolla, A. B. Preobrajenski, and A. S. Vinogradov, Phys. Solid State 59, 368 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    K. A. Simonov, A. S. Vinogradov, M. M. Brzhezinskaya, A. B. Preobrajenski, A. V. Generalov, and A. Yu. Klyushin, Appl. Surf. Sci. 267, 132 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    S. I. Fedoseenko, I. E. Iossifov, S. A. Gorovikov, J.-S. Schmid, R. Follath, S. L. Molodtsov, V. K. Adamchuk, and G. Kaindl, Nucl. Insrum. Methods Phys. Res., Sect. A 470, 84 (2001).ADSCrossRefGoogle Scholar
  32. 32. Scholar
  33. 33.
    A. P. Lukirskii and I. A. Brytov, Sov. Phys. Solid State 6, 32 (1964).Google Scholar
  34. 34.
    W. Gudat and C. Kunz, Phys. Rev. Lett. 29, 169 (1972).ADSCrossRefGoogle Scholar
  35. 35.
    A. S. Vinogradov, S. I. Fedoseenko, S. A. Krasnikov, A. B. Preobrajenski, V. N. Sivkov, D. V. Vyalikh, S. L. Molodtsov, V. K. Adamchuk, C. Laubschat, and G. Kaindl, Phys. Rev. B 71, 045127 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Insrum. Methods Phys. Res. A 603, 95 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    M.-S. Liao and S. Scheiner, J. Chem. Phys. 117, 205 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    C. Berrios, G. I. Cárdenas-Jirón, J. F. Marco, C. Gutiérrez, and M. S. Ureta-Zañartu, J. Phys. Chem. A 111, 2706 (2007).CrossRefGoogle Scholar
  39. 39.
    W. R. Scheidt and Y. J. Lee, Struct. Bonding 64, 1 (1987).CrossRefGoogle Scholar
  40. 40.
    H. Ebert, J. Stöhr, S. S. P. Parkin, M. Samant, and A. Nilsson, Phys. Rev. B 53, 16067 (1996).ADSCrossRefGoogle Scholar
  41. 41.
    J. G. Chen, Surf. Sci. Rep. 30, 1 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    J. Wang, G. Cooper, D. Tulumello, and A. P. Hitchcock, J. Phys. Chem. A 109, 10886 (2005).CrossRefGoogle Scholar
  43. 43.
    G. L. Miessler, P. J. Fischer, and D. A. Tarr, Inorganic Chemistry, 5th ed. (Pearson Upper Saddle River, NJ, 2014).Google Scholar
  44. 44.
    I. B. Bersuker, Electron Structure and Properties of Coordination Compounds. Introduction to the Theory, 3th ed. (Khimiya, Leningrad, 1986).Google Scholar
  45. 45.
    A. S. Vinogradov, T. M. Zimkina, V. N. Akimov, and B. Shlarbaum, Izv. Akad. Nauk SSSR, Ser. Fiz. 38, 508 (1974).Google Scholar
  46. 46.
    G. R. Wight and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 4, 313 (1974).CrossRefGoogle Scholar
  47. 47.
    J. A. Bearden, Rev. Mod. Phys. 39, 78 (1967).ADSCrossRefGoogle Scholar
  48. 48.
    D. H. Karweik and N. Winograd, Inorg. Chem. 15, 2336 (1976).CrossRefGoogle Scholar
  49. 49.
    T. Konishi, J. Kawai, M. Fujiwara, T. Kurisaki, H. Wakita, and Y. Gohshi, X-Ray Spectrom. 28, 470 (1999).ADSCrossRefGoogle Scholar
  50. 50.
    A. Rosa, G. Ricciardi, E. J. Baerends, and S. J. A. van Gisbergen, J. Phys. Chem. A 105, 3311 (2001).CrossRefGoogle Scholar
  51. 51.
    T. A. Smith, J. E. Penner-Hahn, M. A. Berding, S. Doniach, and K. O. Hodgson, J. Am. Chem. Soc. 107, 5945 (1985).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. I. Svirskiy
    • 1
  • A. V. Generalov
    • 1
    • 2
  • A. Yu. Klyushin
    • 1
    • 3
    • 4
  • K. A. Simonov
    • 1
    • 2
    • 5
  • S. A. Krasnikov
    • 1
    • 6
  • N. A. Vinogradov
    • 1
    • 2
  • A. L. Trigub
    • 7
  • Ya. V. Zubavichus
    • 7
  • A. B. Preobrazhenski
    • 1
    • 2
  • A. S. Vinogradov
    • 1
    Email author
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.MAX IV LaboratoryUniversity of LundLundSweden
  3. 3.Research Group Catalysis for EnergyHelmholtz Zentrum BerlinBerlinGermany
  4. 4.Dept. Inorganic ChemistryFritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany
  5. 5.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  6. 6.School of Physical SciencesDublin City UniversityGlasnevin, Dublin 9Republic of Ireland
  7. 7.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations