Advertisement

Physics of the Solid State

, Volume 59, Issue 12, pp 2394–2400 | Cite as

Dynamics of threading dislocations in porous heteroepitaxial GaN films

  • M. Yu. Gutkin
  • E. A. Rzhavtsev
Mechanical Properties, Physics Of Strength, And Plasticity

Abstract

Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Paskova, D. A. Hanser, and K. R. Evans, Proc. IEEE 98, 1324 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Nakamura and M. R. Krames, Proc. IEEE 101, 2211 (2013).CrossRefGoogle Scholar
  3. 3.
    J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014).CrossRefGoogle Scholar
  4. 4.
    Z. Alaie, S. M. Nejad, and M. N. Yousefi, Mater. Sci. Semicond. Proc. 29, 16 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Fujita, Jpn. J. Appl. Phys. 54, 030101 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    L. Y. Kuritzki and J. S. Speck, MRS Commun. 5, 463 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Matsuoka, Int. J. Optomechatron. 9, 1 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    J. Wang, P. Mulligan, L. Brillson, and L. R. Cao, Appl. Phys. Rev. 2, 031102 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    F. A. Marino, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick, and M. Saraniti, IEEE Trans. Electron Dev. 57, 353 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    S. E. Bennett, Mater. Sci. Technol. 26, 9 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, C. G. Fonstad, and P. Chen, Appl. Phys. Lett. 87, 251915 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    H. Hartono, C. B. Soh, S. Y. Chow, S. J. Chua, and E. A. Fitzgerald, Appl. Phys. Lett. 90, 17191 (2007).CrossRefGoogle Scholar
  13. 13.
    D. H. Lee, J. J. Jang, B. H. Kong, H. K. Cho, and O. Nam, Jpn. J. Appl. Phys. Pt. 1 49, 058001 (2010).CrossRefGoogle Scholar
  14. 14.
    M. G. Mynbaeva, A. E. Nikolaev, A. A. Sitnikova, and K. D. Mynbaev, Cryst. Eng. Commun. 15, 3640 (2013).CrossRefGoogle Scholar
  15. 15.
    A. E. Romanov, W. Pompe, G. E. Beltz, and J. S. Speck, Appl. Phys. Lett. 69, 3342 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Bougrov, M. A. Odnoblyudov, A. E. Romanov, T. Lang, and O. V. Konstantinov, Phys. Status Solidi A 203, R25 (2006).Google Scholar
  17. 17.
    D. M. Artemiev, T. S. Orlova, V. E. Bougrov, M. A. Odnoblyudov, and A. E. Romanov, AIP Conf. Proc. 1583, 310 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Artemiev, T. S. Orlova, V. E. Bougrov, M. A. Odnoblyudov, and A. E. Romanov, J. Electron. Mater. 44, 1287 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    J. Dundurs and T. Mura, J. Mech. Phys. Solids 12, 177 (1964).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Smith, Int. J. Eng. Sci. 6, 129 (1968).CrossRefGoogle Scholar
  21. 21.
    J. Dundurs, in Mathematical Theory of Dislocations, Ed. by T. Mura (ASME, New York, 1969), p.70.Google Scholar
  22. 22.
    G. P. Sendeckyj, Phys. Statis Solidi A 3, 529 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    W. G. Wolfer and W. J. Drugan, Philos. Mag. A 57, 923 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    V. A. Lubarda, J. Elasticity 52, 289 (1999).MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Yu. Gutkin and A. G. Sheinerman, Phys. Status Solidi B 231, 356 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Lubarda and X. Markenscoff, Mater. Sci. Eng. A 349, 327 (2003).CrossRefGoogle Scholar
  27. 27.
    V. A. Lubarda, M. S. Schneider, D. H. Kalantar, B. R. Remington, and M. A. Meyers, Acta Mater. 52, 1397 (2004).CrossRefGoogle Scholar
  28. 28.
    Q. H. Fang and Y. W. Liu, Phys. Status Solidi B 243, R28 (2006).Google Scholar
  29. 29.
    Q. H. Fang, B. Li, and Y. W. Liu, Phys. Status Solidi B 244, 2576 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    M. Yu. Gutkin and A. G. Sheinerman, Phys. Solid State 49, 1672 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    M. Yu. Gutkin, A. G. Sheinerman, and M. A. Smirnov, Mech. Mater. 41, 905 (2009).CrossRefGoogle Scholar
  32. 32.
    M. Yu. Gutkin, A. G. Sheinerman, M. A. Smirnov, V. G. Kohn, T. S. Argunova, J. H. Je, and J. W. Jung, Appl. Phys. Lett. 93, 151905 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    V. A. Lubarda, Int. J. Plast. 27, 181 (2011).CrossRefGoogle Scholar
  34. 34.
    V. A. Lubarda, Int. J. Solids Struct. 48, 648 (2011).CrossRefGoogle Scholar
  35. 35.
    S. S. Moeini-Ardakani, M. Yu. Gutkin, and H. M. Shodja, Scr. Mater. 64, 709 (2011).CrossRefGoogle Scholar
  36. 36.
    H. M. Shodja, M. Yu. Gutkin, and S. S. Moeini-Ardakani, Phys. Status Solidi B 248, 1437 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A. L. Kolesnikova, M. Yu. Gutkin, S. A. Krasnitckii, and A. E. Romanov, Int. J. Solids Struct. 50, 1839 (2013).CrossRefGoogle Scholar
  38. 38.
    L. Wang, J. Zhou, D. Hui, and S. Zhang, Int. J. Mech. Sci. 79, 168 (2014).CrossRefGoogle Scholar
  39. 39.
    R. J. Amodeo and N. M. Ghoniem, Phys. Rev. B 41, 6958 (1990).ADSCrossRefGoogle Scholar
  40. 40.
    R. J. Amodeo and N. M. Ghoniem, Phys. Rev. B 41, 6968 (1990).ADSCrossRefGoogle Scholar
  41. 41.
    E. van der Giessen and A. Needleman, Mod. Simul. Mater. Sci. Eng. 3, 689 (1995).ADSCrossRefGoogle Scholar
  42. 42.
    S. S. Quek, Z. Wu, Y. W. Zhang, and D. J. Srolovitz, Acta Mater. 75, 92 (2014).CrossRefGoogle Scholar
  43. 43.
    S. S. Quek, Z. H. Chooi, Z. Wu, Y. W. Zhang, and D. J. Srolovitz, J. Mech. Phys. Solids 88, 252 (2016).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Yu. Gutkin, K. N. Mikaelyan, A. E. Romanov, and P. Klimanek, Phys. Status Solidi A 193, 35 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    K. N. Mikaelyan, M. Seefeldt, M. Yu. Gutkin, P. Klimanek, and A. E. Romanov, Phys. Solid State 45, 2104 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 52, 3793 (2004).CrossRefGoogle Scholar
  47. 47.
    S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Phys. Solid State 46, 2053 (2004).ADSCrossRefGoogle Scholar
  48. 48.
    G. F. Sarafanov and V. N. Perevezentsev, Tech. Phys. Lett. 33, 400 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    G. F. Sarafanov and V. N. Perevezentsev, Vopr. Materialoved. 49 (1), 5 (2007).Google Scholar
  50. 50.
    G. F. Sarafanov, Phys. Solid State 50, 1868 (2008).ADSCrossRefGoogle Scholar
  51. 51.
    O. Dmitrieva, J. V. Svirina, E. Demir, and D. Raabe, Mod. Simul. Mater. Sci. Eng. 18, 085011 (2010).ADSCrossRefGoogle Scholar
  52. 52.
    Yu. V. Svirina and V. N. Perevezentsev, Tech. Phys. 58, 1224 (2013).CrossRefGoogle Scholar
  53. 53.
    M. Yu. Gutkin and E. A. Rzhavtsev, Phys. Solid State 57, 2447 (2015).ADSCrossRefGoogle Scholar
  54. 54.
    E. A. Rzhavtsev and M. Yu. Gutkin, Scr. Mater. 100, 102 (2015).CrossRefGoogle Scholar
  55. 55.
    H. H. M. Cleveringa, E. van der Giessen, and A. Needleman, J. Mech. Phys. Solids 48, 1133 (2000).ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    M. P. O’Day and W. A. Curtin, J. Mech. Phys. Solids 53, 359 (2005).ADSCrossRefGoogle Scholar
  57. 57.
    T. K. Bhandakkar, A. C. Chng, W. A. Curtin, and H. Gao, J. Mech. Phys. Solids 58, 530 (2010).ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    M. Huang, J. Tong, and Z. Li, Int. J. Plast. 54, 229 (2014).CrossRefGoogle Scholar
  59. 59.
    S. Liang, M. Huang, and Z. Li, Int. J. Solids Struct. 54–57, 209 (2015).Google Scholar
  60. 60.
    M. Huang, Z. Li, and C. Wang, Acta Mater. 55, 1387 (2007).CrossRefGoogle Scholar
  61. 61.
    M. I. Hussein, U. Borg, C. F. Niordson, and V. S. Deshpande, J. Mech. Phys. Solids 56, 114 (2008).ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    J. Segurado and J. Llorca, Acta Mater. 57, 1427 (2009).CrossRefGoogle Scholar
  63. 63.
    J. Segurado and J. Llorca, Int. J. Plast. 26, 806 (2010).CrossRefGoogle Scholar
  64. 64.
    I. A. Ovid’ko and A. G. Sheinerman, Rev. Adv. Mater. Sci. 39, 99 (2014).Google Scholar
  65. 65.
    I. A. Ovid’ko and A. G. Sheinerman, J. Mater. Sci. 50, 4430 (2015).ADSCrossRefGoogle Scholar
  66. 66.
    Ya. V. Konakov, I. A. Ovid’ko, and A. G. Sheinerman, Phys. Solid State 58, 1819 (2016).ADSCrossRefGoogle Scholar
  67. 67.
    U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci. 19, 73 (1975).Google Scholar
  68. 68.
    S. P. Timoshenko and J. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1951; Nauka, Moscow, 1979).zbMATHGoogle Scholar
  69. 69.
    J. Hirth and J. Lothe, Theory of Dislocations (McGraw- Hill, New York, 1967; Atomizdat, Moscow, 1972).zbMATHGoogle Scholar
  70. 70.
    V. I. Nikolaev, V. V. Shpeizman, and B. I. Smirnov, Phys. Solid State 42, 437 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations