Advertisement

Physics of the Solid State

, Volume 59, Issue 12, pp 2407–2412 | Cite as

New luminescence lines in nanodiamonds obtained by chemical vapor deposition

  • V. G. Golubev
  • S. A. Grudinkin
  • V. Yu. Davydov
  • A. N. Smirnov
  • N. A. Feoktistov
Impurity Centers

Abstract

The spectral characteristics of the photoluminescence lines detected for nanodiamonds obtained by the reactive ion etching of diamond particles in oxygen plasma, deposited by chemical vapor deposition on a silicon substrate, are studied. At room temperature, narrow lines are observed in the visible and infrared spectral regions, with a full width at half-maximum in the range of 1–2 nm at an almost complete absence of a broadband photoluminescence background signal. At decreasing temperature, the lines narrowed to 0.2–0.6 nm at T = 79 K, and the minimum line width was 0.055 nm at T = 10 K. With increasing temperature, the narrow lines shifted to the long-wavelength region of the spectrum, and their intensity decreased.

References

  1. 1.
    J. Orwa, A. Greentree, I. Aharonovich, A. Alves, J. van Donkelaar, A. Stacey, and S. Prawer, J. Lumin. 130, 1646 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, and A. Zaitsev, New J. Phys. 13, 035024 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    I. Aharonovich, A. D. Greentree, and S. Prawer, Nat. Photon. 5, 397 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    K. Beha, H. Fedder, M. Wolfer, M. C. Becker, P. Siyushev, M. Jamali, A. Batalov, C. Hinz, J. Hees, L. Kirste, H. Obloh, E. Gheeraert, B. Naydenov, I. Jakobi, F. Dolde, et al., Beilstein J. Nanotechnol. 3, 895 (2012).CrossRefGoogle Scholar
  5. 5.
    M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    I. Aharonovich and E. Neu, Adv. Opt. Mater. 2, 911 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Nagl, S. R. Hemelaar, and R. Schirhagl, An. Bioanal. Chem. 407, 7521 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Neves and M. H. Nazaré, Properties, Growth and Applications of Diamond (IET, London, 2001).Google Scholar
  9. 9.
    I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, V. I. Konov, and E. Goovaerts, Adv. Mater. 21, 808 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Basov, M. Rähn, M. Pärs, I. Vlasov, I. Sildos, A. Bolshakov, V. Golubev, and V. Ralchenko, Phys. Status Solidi A 206, 2009 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, Appl. Phys. Lett. 98, 243107 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Catledge and S. Singh, Adv. Sci. Lett. 4, 512 (2011).CrossRefGoogle Scholar
  13. 13.
    E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, New J. Phys. 15, 043005 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    B. Pingault, J. N. Becker, C. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C. Becher, and M. Atatüre, Phys. Rev. Lett. 113, 263601 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Grudinkin, N. A. Feoktistov, K. V. Bogdanov, M. A. Baranov, A. V. Baranov, A. V. Fedorov, and V. G. Golubev, Semiconductors 48, 268 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    C. Arend, J. N. Becker, H. Sternschulte, D. Steinmüller-Nethl, and C. Becher, Phys. Rev. B 94, 045203 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    K. Li, Y. Zhou, A. Rasmita, I. Aharonovich, and W. Gao, Phys. Rev. Appl. 6, 024010 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    J. L. Zhang, H. Ishiwata, T. M. Babinec, M. Radulaski, K. Müller, K. G. Lagoudakis, C. Dory, J. Dahl, R. Edgington, V. Soulière, G. Ferro, A. A. Fokin, P. R. Schreiner, Z.-X. Shen, N. A. Melosh, and J. Vučković, Nano Lett. 16, 212 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    L. Himics, S. Tóth, M. Veres, and M. Koós, Opt. Quant. Electron. 48, 394 (2016).CrossRefGoogle Scholar
  20. 20.
    C. Arend, P. Appel, J. N. Becker, M. Schmidt, M. Fischer, S. Gsell, M. Schreck, C. Becher, P. Maletinsky, and E. Neu, Appl. Phys. Lett. 108, 063111 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    J. Rabeau, Y. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, Appl. Phys. Lett. 86, 131926 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    E. Wu, J. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, New J. Phys. 9, 434 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    M. Wolfer, A. Kriele, O. Williams, H. Obloh, C.-C. Leancu, and C. Nebel, Phys. Status Solidi A 206, 2012 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S. Castelletto, A. Edmonds, T. Gaebel, and J. Rabeau, IEEE J. Sel. Top. Quant. Electron. 18, 1792 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Tóth, L. Himics, and M. Koós, J. Lumin. 176, 367 (2016).CrossRefGoogle Scholar
  26. 26.
    I. Aharonovich, S. Castelletto, D. A. Simpson, A. Stacey, J. McCallum, A. D. Greentree, and S. Prawer, Nano Lett. 9, 3191 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    I. Aharonovich, S. Castelletto, D. Simpson, A. Greentree, and S. Prawer, Phys. Rev. A 81, 043813 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    S. Castelletto and A. Boretti, Opt. Lett. 36, 4224 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    A. Stacey, D. A. Simpson, T. J. Karle, B. C. Gibson, V. M. Acosta, Z. Huang, K. M. C. Fu, C. Santori, R. G. Beausoleil, L. P. McGuinness, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, Adv. Mater. 24, 3333 (2012).CrossRefGoogle Scholar
  30. 30.
    S. A. Momenzadeh, F. F. de Oliveira, P. Neumann, D. B. Rao, A. Denisenko, M. Amjadi, Z. Chu, S. Yang, N. B. Manson, M. W. Doherty, and J. Wrachtrup, Phys. Rev. Appl. 6, 024026 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    R. G. Sandstrom, O. Shimoni, A. A. Martin, and I. Aharonovich, Appl. Phys. Lett. 105, 181104 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    D. G. Monticone, P. Traina, E. Moreva, J. Forneris, P. Olivero, I. Degiovanni, F. Taccetti, L. Giuntini, G. Brida, G. Amato, and M. Genovese, New J. Phys. 16, 053005 (2014).CrossRefGoogle Scholar
  33. 33.
    K. Bray, R. Sandstrom, C. Elbadawi, M. Fischer, M. Schreck, O. Shimoni, C. Lobo, M. Toth, and I. Aharonovich, ACS Appl. Mater. Interfaces 8, 7590 (2016).CrossRefGoogle Scholar
  34. 34.
    S. A. Grudinkin, N. A. Feoktistov, M. A. Baranov, A.N. Smirnov, V. Y. Davydov, and V. G. Golubev, Nanotechnol. 27, 395606 (2016).CrossRefGoogle Scholar
  35. 35.
    N. A. Feoktistov, V. I. Sakharov, I. T. Serenkov, V. A. Tolmachev, I. V. Korkin, A. E. Aleksenskii, A. Ya. Vul’, and V. G. Golubev, Tech. Phys. 56, 718 (2011).CrossRefGoogle Scholar
  36. 36.
    A. E. Aleksenskiy, E. D. Eydelman, and A. Y. Vul, Nanosci. Nanotechnol. Lett. 3, 68 (2011).CrossRefGoogle Scholar
  37. 37.
    S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K.V. Bogdanov, A. V. Baranov, A. Y. Vul, and V. G. Golubev, J. Phys. D 45, 062001 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    V. Sedov, A. Khomich, V. Ralchenko, A. Martyanov, S. Savin, O. Poklonskaya, and N. Trofimov, J. Coat. Sci. Technol. 2, 38 (2015).CrossRefGoogle Scholar
  39. 39.
    L. Bergman, M. McClure, J. Glass, and R. Nemanich, J. Appl. Phys. 76, 3020 (1994).ADSCrossRefGoogle Scholar
  40. 40.
    S. Prawer and R. J. Nemanich, Phil. Trans. R. Soc. London A 362, 2537 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    H. Sternschulte, K. Thonke, R. Sauer, P. Münzinger, and P. Michler, Phys. Rev. B 50, 14554 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, Berlin, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. G. Golubev
    • 1
  • S. A. Grudinkin
    • 1
    • 2
  • V. Yu. Davydov
    • 1
  • A. N. Smirnov
    • 1
  • N. A. Feoktistov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.National Research University of Information TechnologiesMechanics, and OpticsSt. PetersburgRussia

Personalised recommendations