Skip to main content
Log in

Study of quasi-two- and three-dimensional ordered porous structures by means of small-angle X-ray scattering in the grazing incidence geometry

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure of surface layers of thin metal inverse opals has been studied first by the grazing-incidence small-angle X-ray scattering technique. Contributions of the form factor and structure factor to the small-angle diffraction pattern have been separated using a numerical model of the scattering process. The complementary use of the small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering techniques has provided independent information about the bulk and surface properties of the samples and allowed a type of defect in the investigated structures to be determined. The measurement results have been verified by atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  2. H. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley-IEEE, New York, 2006).

    Book  Google Scholar 

  3. C. Zhu, D. Du, A. Eychmuller, and Y. Lin, Chem. Rev. 115, 8896 (2015).

    Article  Google Scholar 

  4. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Rep. Prog. Phys. 75, 036501 (2012).

    Article  ADS  Google Scholar 

  5. H. Hsueh, C. Yao, and R. Ho, Chem. Soc. Rev. 44, 1974 (2015).

    Article  Google Scholar 

  6. A. A. Zhukov, A. V. Goncharov, and P. A. J. de Groot, Appl. Phys. Lett. 88, 62511 (2006).

    Article  Google Scholar 

  7. V. A. Ukleev, N. A. Grigoryeva, E. A. Dyadkina, A. A. Vorobiev, D. Lott, L. V. Lutsev, A. I. Stognij, N.N. Novitskiy, A. A. Mistonov, D. Menzel, and S. V. Grigoriev, Phys. Rev. B 86, 134424 (2012).

    Article  ADS  Google Scholar 

  8. A. I. Plekhanov, D. V. Kalinin, and V. V. Serdobintseva, Ross. Nanotekhnol. 1, 245 (2006).

    Google Scholar 

  9. V. N. Bogomolov and T. M. Pavlova, Semiconductors 29, 428 (1995).

    ADS  Google Scholar 

  10. K. S. Napolskii, N. A. Sapoletova, D. F. Gorozhankin, A. A. Eliseev, D. Y. Chernyshov, D. V. Byelov, N. A. Grigoryeva, A. A. Mistonov, W. G. Bouwman, K. O. Kvashnina, A. V. Lukashin, A. A. Snigirev, A. V. Vassilieva, S. V. Grigoriev, and A. V. Petukhov, Langmuir 26, 2346 (2010).

    Article  Google Scholar 

  11. C. F. Blanford, T. N. Do, B. T. Holland, and A. Stein, Mater. Res. Soc. Symp. Proc. 549, 61 (1999).

    Article  Google Scholar 

  12. S. A. Johnson, P. J. Ollivier, and T. E. Mallouk, Science 283, 963 (1999).

    Article  ADS  Google Scholar 

  13. Q. Luo, Z. Liu, L. Li, S. Xie, J. Kong, and D. Zhao, Adv. Mater. 13, 286 (2001).

    Article  Google Scholar 

  14. W. B. Xia, J. L. Gao, S. Y. Zhang, X. J. Luo, L. Y. Chen, L. Q. Xu, S. L. Tang, and Y. W. Du, Opt. Express 22, 1359 (2014).

    Article  ADS  Google Scholar 

  15. N. Maccaferri, X. Inchausti, A. García-Martín, J. C. Cuevas, D. Tripathy, A. O. Adeyeye, and P. Vavassori, ACS Photon. 2, 1769 (2015).

    Article  Google Scholar 

  16. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, Phys. Rev. B 74, 245415 (2006).

    Article  ADS  Google Scholar 

  17. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, and A. A. Fedyanin, J. Appl. Phys. 111, 07A948 (2012).

    Article  Google Scholar 

  18. K. Napolskii, N. Sapoletova, A. Eliseev, G. Tsirlina, A. Rubacheva, E. Ganshina, M. Kuznetsov, M. Ivanov, V. Valdner, E. Mishina, A. van Etteger, and Th. Rasing, J. Magn. Magn. Mater. 321, 833 (2009).

    Article  ADS  Google Scholar 

  19. J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, Appl. Phys. Lett. 99, 193109 (2011).

    Article  ADS  Google Scholar 

  20. E. Melander, E. Östman, J. Keller, J. Schmidt, E. Th. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjörvarsson, Appl. Phys. Lett. 101, 063107 (2012).

    Article  ADS  Google Scholar 

  21. E. K. Semenova and D. V. Berkov, J. Appl. Phys. 114, 13905 (2013).

    Article  ADS  Google Scholar 

  22. R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli, M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr, and D. Grundler, Phys. Rev. B 85, 012403 (2012).

    Article  ADS  Google Scholar 

  23. F. Haering, U. Wiedwald, S. Nothelfer, B. Koslowski, P. Ziemann, L. Lechner, A. Wallucks, K. Lebecki, U. Nowak, J. Gräfe, E. Goering, and G. Schütz, Nanotechnology 24, 465709 (2013).

    Article  Google Scholar 

  24. T. Meng, J. Laloë, S. N. Holmes, A. Husmann, and G. A. C. Jones, Appl. Phys. 106, 033901 (2009).

    Article  Google Scholar 

  25. C. C. Wang, A. O. Adeyeye, N. Singh, Y. S. Huang and Y. H. Wu, Phys. Rev. B 72, 174426 (2005).

    Article  ADS  Google Scholar 

  26. I. S. Dubitskiy, A. V. Syromyatnikov, N. A. Grigoryeva, A. A. Mistonov, and S. V. Grigoriev, arXiv:1509.05201v2 (2015).

    Google Scholar 

  27. A. A. Mistonov, N. A. Grigoryeva, A. V. Chumakova, H. Eckerlebe, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, D. Menzel, and S. V. Grigoriev, Phys. Rev. B 87, 220408 (2013).

    Article  ADS  Google Scholar 

  28. V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, A. V. Sel’kin, E. B. Shadrin, A. V. Il’inski, and R. Boeyink, Semiconductors 36, 1043 (2002).

    Article  ADS  Google Scholar 

  29. Yu. P. Voinov, N. F. Gabitova, V. S. Gorelik, G. A. Emel’-chenko, and V. M. Masalov, Inorg. Mater. 45, 894 (2009).

    Article  Google Scholar 

  30. R. C. Pennington, G. D’Alessandro, J. J. Baumberg, and M. Kaczmarek, Phys. Rev. A 79, 043822 (2009).

    Article  ADS  Google Scholar 

  31. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).

    Article  Google Scholar 

  32. S. V. Grigoriev, K. S. Napolskii, N. A. Grigoryeva, A. V. Vasilieva, A. A. Mistonov, D. Yu. Chernyshov, A. V. Petukhov, D. V. Belov, A. A. Eliseev, A. V. Lukashin, Yu. D. Tretyakov, A. S. Sinitskii, and H. Eckerlebe, Phys. Rev. B 79, 045123 (2009).

    Article  ADS  Google Scholar 

  33. N. A. Grigoryeva, A. A. Mistonov, K. S. Napolskii, N. A. Sapoletova, A. A. Eliseev, W. Bouwman, D. V. Byelov, A. V. Petukhov, D. Yu. Chernyshov, H. Eckerlebe, A. V. Vasilieva, and S. V. Grigoriev, Phys. Rev. B 84, 064405 (2011).

    Article  ADS  Google Scholar 

  34. A. A. Mistonov, I. S. Shishkin, I. S. Dubitskii, N. A. Grigoryeva, H. Eckerlebe, and S. V. Grigoriev, J. Exp. Theor. Phys. 120, 844 (2015).

    Article  ADS  Google Scholar 

  35. I. S. Shishkin, A. A. Mistonov, I. S. Dubitskiy, N. A. Grigoryeva, D. Menzel, and S. V. Grigoriev, Phys. Rev. B 94, 064424 (2016).

    Article  ADS  Google Scholar 

  36. A. Sinitskii, V. Abramova, N. Grigorieva, S. Grigoriev, A. Snigirev, D. V. Byelov, and A. V. Petukhov, Eur. Phys. Lett. 89, 14002 (2010).

    Article  ADS  Google Scholar 

  37. A. K. Samusev, I. S. Sinev, K. B. Samusev, M. V. Rybin, A. A. Mistonov, N. A. Grigoryeva, S. V. Grigoriev, A. V. Petukhov, D. V. Byelov, E. Yu. Trofimova, D. A. Kurdyukov, V. G. Golubev, and M. F. Limonov, Phys. Solid State 54, 2073 (2012).

    Article  ADS  Google Scholar 

  38. M. V. Rybin, I. S. Sinev, A. K. Samusev, K. B. Samusev, E. Y. Trofimova, D. A. Kurdyukov, V. G. Golubev, and M. F. Limonov, Phys. Rev. B 87, 125131 (2013).

    Article  ADS  Google Scholar 

  39. A. K. Samusev, K. B. Samusev, M. V. Rybin, M. F. Limonov, E. Yu. Trofimova, D. A. Kurdyukov, and V. G. Golubev, Phys. Solid State 53, 1056 (2011).

    Article  ADS  Google Scholar 

  40. M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, Sci. Rep. 6, 30773 (2016).

    Article  ADS  Google Scholar 

  41. E. Armstrong, M. Osiak, H. Geaney, C. Glynn, and C. O’Dwyer, CrystEngComm 16, 10804 (2014).

    Article  Google Scholar 

  42. A. Balestreri, L. C. Andreani, and M. Agio, Phys. Rev. E 74, 036603 (2006).

    Article  ADS  Google Scholar 

  43. X. Yu, Y. J. Lee, R. Furstenberg, J. O. White, and P. V. Braun, Adv. Mater. 19, 1689 (2007).

    Article  Google Scholar 

  44. N. Sapoletova, T. Makarevich, K. Napolskii, E. Mishina, A. Eliseev, A. Etteger, T. Rasing, and G. Tsirlina, Phys. Chem. Chem. Phys. 12, 15414 (2010).

    Article  Google Scholar 

  45. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci. 252, 464 (1974).

    Article  Google Scholar 

  46. K. S. Napolskii, A. Sinitskii, S. V. Grigoriev, N. A. Grigorieva, H. Eckerlebe, A. A. Eliseev, A. V. Lukashin, and Y. D. Tretyakov, Phys. B: Condens. Matter 397, 23 (2007).

    Article  ADS  Google Scholar 

  47. N. A. Sapoletova, K. S. Martynova, K. S. Napolskii, A. A. Eliseev, A. V. Lukashin, I. V. Kolesnik, D. I. Petukhov, S. E. Kushnir, A. V. Vassilieva, S. V. Grigoriev, N. A. Grigoryeva, A. A. Mistonov, D. V. Byelov, and Yu. D. Tret’yakov, Phys. Solid State 53, 1126 (2011).

    Article  ADS  Google Scholar 

  48. A. V. Chumakova, G. A. Valkovskiy, A. A. Mistonov, V. A. Dyadkin, N. A. Grigoryeva, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. V. Petukhov, and S. V. Grigoriev, Phys. Rev. B 90, 144103 (2014).

    Article  ADS  Google Scholar 

  49. M. Borsboom, W. Bras, I. Cerjak, D. Detollenaere, D. Glastravan Loon, P. Goedtkindt, M. Konijnenburg, P. Lassing, Y. K. Levine, B. Munneke, M. Oversluizen, R. van Tol, and E. Vlieg, J. Synchrotr. Rad. 5, 518 (1998).

    Article  Google Scholar 

  50. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).

    Article  ADS  Google Scholar 

  51. A. A. Eliseev, D. F. Gorozhankin, K. S. Napolskii, A. V. Petukhov, N. A. Sapoletova, A. V. Vasilieva, N. A. Grigoryeva, A. A. Mistonov, D. V. Belov, V. G. Bauman, K. O. Kvashnina, D. Yu. Chernyshov, A. A. Bosak, and S. V. Grigoriev, JETP Lett. 90, 272 (2009).

    Article  ADS  Google Scholar 

  52. P. Huber, O. Bunk, U. Pietsch, M. Textor, and T. Geue, J. Phys. Chem. B 114, 12473 (2010).

    Article  Google Scholar 

  53. R. P. A. Dullens, and A. V. Petukhov, Europhys. Lett. 77, 58003 (2007).

    Article  ADS  Google Scholar 

  54. J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, J. Phys. Chem. Ref. Data 4, 471 (1975).

    Article  ADS  Google Scholar 

  55. R. Lazzari, J. Appl. Crystallogr. 35, 406 (2002).

    Article  Google Scholar 

  56. M. de Graef and M. E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry (Cambridge Univ. Press, New York, 2012).

    Book  MATH  Google Scholar 

  57. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1998).

    Article  ADS  Google Scholar 

  58. A. A. Mistonov, Cand. Sci. Dissertation (St. Petersburg, 2013).

    Google Scholar 

  59. K. Busch and S. John, Phys. Rev. E 58, 3896 (1998).

    Article  ADS  Google Scholar 

  60. I. S. Shishkin, A. A. Mistonov, N. A. Grigoryeva, D. Menzel, and S. V. Grigoriev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 156 (2016).

    Article  Google Scholar 

  61. A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Dubitskiy.

Additional information

Original Russian Text © I.S. Dubitskiy, N.A. Grigoryeva, A.A. Mistonov, G.A. Valkovskiy, N.A. Sapoletova, S.V. Grigoriev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 12, pp. 2435–2446.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubitskiy, I.S., Grigoryeva, N.A., Mistonov, A.A. et al. Study of quasi-two- and three-dimensional ordered porous structures by means of small-angle X-ray scattering in the grazing incidence geometry. Phys. Solid State 59, 2464–2475 (2017). https://doi.org/10.1134/S1063783417120137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417120137

Navigation