Skip to main content
Log in

NMR study of topological insulator Bi2Te3 in a wide temperature range

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

NMR studies of 125Te in the topological insulator bismuth telluride Bi2Te3 in a wide temperature range from room temperature to 12.5 K are performed. The pulsed NMR spectrometer Bruker Avance 400 is applied. The NMR spectra are obtained for the powder from Bi2Te3 single crystal and monocrystalline plates with the orientations c || B and cB. At room temperature, the spectra consist of two lines related to two nonequivalent positions of tellurium nuclei Te1 and Te2. The parameters of the NMR frequency shift tensor are found from the powder spectrum. The temperature dependences of the spectra for the powder and plates with the orientation c ⊥ B agree with each other. The line shift with decreasing temperature is explained by the reduction of the Knight shift. The thermal activation energy of charge carriers is estimated. The spectra for the plates with the orientation c || B demonstrate peculiar behavior below 91 K. The spin-lattice relaxation time for the powder and monocrystalline plates with both orientations at room temperature is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. N. Read, Phys. Today 65, 38 (2012).

    Article  Google Scholar 

  4. D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

    Article  ADS  Google Scholar 

  5. S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys.: Condens. Matter 9, 461 (1997).

    ADS  Google Scholar 

  6. Y. L. Chen, J. G. Analytis, J. H. Lu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 325, 178 (2009).

    Article  ADS  Google Scholar 

  7. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009).

    Article  ADS  Google Scholar 

  8. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).

    Article  Google Scholar 

  9. A. Abragam, Principles of Nuclear Magnetism (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  10. J. Winter, Magnetic Resonance in Metals (Clarendon, Oxford, 1971).

    Google Scholar 

  11. H. Selbach, O. Kanert, and D. Wolf, Phys. Rev. B 19, 4435 (1979).

    Article  ADS  Google Scholar 

  12. S. Mukhopadhyay, S. Krämer, H. Mayaffre, H. F. Legg, M. Orlita, C. Berthier, M. Horvatić, G. Martinez, M. Potemski, B. A. Piot, A. Materna, G. Strzelecka, and A. Hruban, Phys. Rev. B 91, 081105 (2015).

    Article  ADS  Google Scholar 

  13. R. E. Taylor, B. Leung, M. P. Lake, and L. S. Bouchard, J. Phys. Chem. C 116, 17300 (2012).

    Article  Google Scholar 

  14. D. Koumoulis, T. C. Chasapis, R. E. Taylor, M. P. Lake, D. King, N. N. Jarenwattananon, G. A. Fiete, M. G. Kanatzidis, and L. S. Bouchard, Phys. Rev. Lett. 110, 026602 (2013).

    Article  ADS  Google Scholar 

  15. B.-L. Young, Z.-Y. Lai, Z. Xu, A. Yang, G. D. Gu, Z.-H. Pan, T. Valla, G. J. Shu, R. Sankar, and F. C. Chou, Phys. Rev. B 86, 075137 (2012).

    Article  ADS  Google Scholar 

  16. N. M. Georgieva, D. Rybicki, R. Guehne, G. V. M. Williams, S. V. Chong, K. Kadowaki, I. Garate, and J. Haase, Phys. Rev. B 93, 195120 (2016).

    Article  ADS  Google Scholar 

  17. D. Yu. Podorozhkin, E. V. Charnaya, A. Antonenko, R. Mukhamad’yarov, V. V. Marchenkov, S. V. Naumov, J. C. A. Huang, H. W. Weber, and A. S. Bugaev, Phys. Solid State 57, 1741 (2015).

    Article  ADS  Google Scholar 

  18. A. Antonenko, E. V. Charnaya, D. Yu. Nefedov, D. Yu. Podorozhkin, A. V. Uskov, A. S. Bugaev, M. K. Lee, L. J. Chang, S. V. Naumov, Yu. A. Perevozchikova, V. V. Chistyakov, E. B. Marchenkova, H. W. Weber, J. C. A. Huang, and V. V. Marchenkov, Phys. Solid State 59, 855 (2017).

    Article  ADS  Google Scholar 

  19. R. K. Harris, E. D. Becker, S. M. C. de Menezes, R. Goodfellow, and P. Granger, Pure Appl. Chem. 73, 1795 (2001).

    Article  Google Scholar 

  20. W. Wong-Ng, H. Joress, J. Martin, P. Y. Zavalij, Y. Yan, and J. Yang, Appl. Phys. Lett. 100, 082107 (2012).

    Article  ADS  Google Scholar 

  21. M. Mehring, Principles of High Resolution NMR in Solids (Springer, Berlin, 1983).

    Book  Google Scholar 

  22. J. Y. Leloup, B. Sapoval, and G. Martinez, Phys. Rev. B 7, 5276 (1973).

    Article  ADS  Google Scholar 

  23. S. Boutin, J. Ramírez-Ruiz, and I. Garate, Phys. Rev. B 94, 115204 (2016).

    Article  ADS  Google Scholar 

  24. B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, Phys. Rev. B 84, 165208 (2011).

    Article  ADS  Google Scholar 

  25. Z. Wang, Z.-G. Fu, S.-X. Wang, and P. Zhangh, Phys. Rev. B 82, 085429 (2010).

    Article  ADS  Google Scholar 

  26. M. M. Vazifeh and M. Franz, Phys. Rev. B 86, 045451 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Charnaya.

Additional information

Original Russian Text © A.O. Antonenko, E.V. Charnaya, D.Yu. Nefedov, D.Yu. Podorozhkin, A.V. Uskov, A.S. Bugaev, M.K. Lee, L.J. Chang, S.V. Naumov, Yu.A. Perevozchikova, V.V. Chistyakov, J.C.A. Huang, V.V. Marchenkov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 12, pp. 2308–23016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonenko, A.O., Charnaya, E.V., Nefedov, D.Y. et al. NMR study of topological insulator Bi2Te3 in a wide temperature range. Phys. Solid State 59, 2331–2339 (2017). https://doi.org/10.1134/S1063783417120058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417120058

Navigation