Physics of the Solid State

, Volume 59, Issue 10, pp 2063–2069 | Cite as

Modification of the electronic structure of graphene by intercalation of iron and silicon atoms

  • I. I. Pronin
  • S. M. Dunaevskii
  • E. Yu. Lobanova
  • E. K. Mikhailenko
Surface Physics, Thin Films


The ab initio calculations of the electronic structure of low-dimensional graphene–iron–nickel and graphene–silicon–iron systems were carried out using the density functional theory. For the graphene–Fe–Ni(111) system, band structures for different spin projections and total densities of valence electrons are determined. The energy position of the Dirac cone caused by the p z states of graphene depends weakly on the number of iron layers intercalated into the interlayer gap between nickel and graphene. For the graphene–Si–Fe(111) system, the most advantageous positions of silicon atoms on iron are determined. The intercalation of silicon under graphene leads to a sharp decrease in the interaction of carbon atoms with the substrate and largely restores the electronic properties of free graphene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    J. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    J. Ryu, Y. Kim, D. Won, N. Kim, J. S. Park, E.-K. Lee, D. Cho, S.-P. Cho, S. J. Kim, G. H. Ryu, H.-A.-S. Shin, Z. Lee, B. H. Hong, and S. Cho, ACS Nano 8, 950 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Varykhalov, J. Sanchez-Barriga, D. Marchenko, P. Hlawenka, P. S. Mandal, and O. Rader, Nat. Commun. 6, 7610 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B 62, 13202 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. S. Dedkov, A. M. Shikin, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, A. Bauer, and G. Kaindl, Phys. Rev. B 64, 035405 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    A. Nagashima, N. Tejima, and C. Oshima, Phys. Rev. B 50, 17487 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    M. Weser, E. N. Voloshina, K. Horn, and Y. S. Dedkov, Phys. Chem. Chem. Phys. 13, 7534 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Rougemaille, A. T. N’Diaye, J. Coraux, C. Vo-Van, O. Fruchart, and A. K. Schmid, Appl. Phys. Lett. 101, 142403 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J. Coraux, A. T. N’Diaye, N. Rougemaille, C. Vo-Van, A. Kimouche, H. X. Yang, M. Chshiev, N. Bendiab, O. Fruchart, and A. K. Schmid, Phys. Chem. Lett. 3, 2059 (2012).CrossRefGoogle Scholar
  12. 12.
    A. D. Vu, J. Coraux, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Rougemaille, Sci. Rep. 6, 24783 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    G. Bertoni, L. Calmels, A. Altibelli, and V. Serin, Phys. Rev. B 71, 075402 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    Yu. S. Dedkov and M. Fonin, New J. Phys. 12, 125004 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Popova (Rybkina), A. M. Shikin, D. E. Marchenko, A. G. Rybkin, O. Yu. Vilkov, A. A. Makarova, A. Yu. Varykhalov, and O. Rader, Phys. Solid State 53, 2539 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    S. M. Kozlov, F. Viñes, and A. Görling, J. Phys. Chem. C 116, 7360 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Matsumoto, S. Entani, A. Koide, M. Ohtomo, P. V. Avramov, H. Naramoto, K. Amemiya, T. Fujikawa, and S. Sakai, J. Mater. Chem. C 1, 5533 (2013).CrossRefGoogle Scholar
  18. 18.
    D. E. Parreiras, E. A. Soares, G. J. P. Abreu, T. E. P. Bueno, W. P. Fernandes, V. E. de Carvalho, S. S. Carara, H. Chacham, and R. Paniago, Phys. Rev. B 90, 155454 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. Dedkov and E. Voloshina, J. Phys.: Condens. Matter 27, 303002 (2015).Google Scholar
  20. 20.
    Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Appl. Phys. Lett. 93, 022509 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    E. A. Soares, G. J. P. Abreu, S. S. Carara, R. Paniago, V. E. de Carvalho, and H. Chacham, Phys. Rev. B 88, 165410 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    O. Vilkov, A. Fedorov, D. Usachov, L. V. Yashina, A. V. Generalov, K. Borygina, N. I. Verbitskiy, A. Grüneis, and D. V. Vyalikh, Nat. Sci. Rep. 3, 2168 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    G. S. Grebenyuk, O. Yu. Vilkov, A. G. Rybkin, M. V. Gomoyunova, B. V. Senkovskiy, D. Yu. Usachov, D. V. Vyalikh, S. L. Molodtsov, and I. I. Pronin, Appl. Surf. Sci. 392, 715 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, et al., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. I. Pronin
    • 1
    • 2
  • S. M. Dunaevskii
    • 3
    • 4
  • E. Yu. Lobanova
    • 1
    • 3
  • E. K. Mikhailenko
    • 1
    • 3
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.National Research Center “Kurchatov Institute,” Konstantinov Nuclear Physics Institute, Petersburg, GatchinaLeningrad oblastRussia

Personalised recommendations