Physics of the Solid State

, Volume 59, Issue 10, pp 2030–2035 | Cite as

Electronic structure of nitrogen-containing carbon nanotubes irradiated with argon ions: XPS and XANES studies

  • S. N. Nesov
  • P. M. Korusenko
  • V. V. Bolotov
  • S. N. Povoroznyuk
  • D. A. Smirnov
Low-Dimensional Systems


Using the methods of X-ray photoelectron (XPS) and X-ray absorption near edge structure (XANES) spectroscopies with synchrotron radiation, data on changes in the electronic structure and chemical composition of nitrogen-containing multiwalled carbon nanotubes (N-MWCNTs) upon their exposure to the radiation of argon ions with an energy of 5 keV are obtained. It is found that the exposure leads to an increase in the degree of defectiveness of the N-MWCNTs structure and to the carbon oxidation with formation of various oxygen-containing groups (C–OH, C=O/COOH, C–O–C/O–C–O, and CO3). The presence of carbon–oxygen bonds on the surface of carbon nanotubes is associated with the formation of radiation defects. It is shown that an increase in the fraction of nitrogen atoms present in the substituting configuration in the N-MWCNTs wall structure due to the irradiation does not give rise to an increase in the density of the occupied states near the Fermi level against the background of an increase in the degree of structure defectiveness, carbon oxidation, and a decrease in the total nitrogen concentration. The obtained results show that the irradiation of N-MWCNTs with argon ions allows one to successfully functionalize their surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Harris, Carbon Nanotubes: Synthesis, Properties, Applications (Cambridge Univ. Press, Cambridge, 2009).CrossRefGoogle Scholar
  2. 2.
    S. van Dommele, A. Romero-Izquirdo, R. Brydson, K. P. de Jong, and J. H. Bitter, Carbon 46, 138 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Mallakpour and S. Soltanian, RSC Adv. 6, 109916 (2016).CrossRefGoogle Scholar
  4. 4.
    A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, Appl. Surf. Sci. 255, 2485 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    V. T. Le, C. L. Ngo, Q. T. Le, T. T. Ngo, D. N. Nguyen, and M. T. Vu, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035017 (2013).ADSGoogle Scholar
  6. 6.
    Y. Zhang, L. Chen, Z. Xu, Y. Li, M. Shan, L. Liu, Q. Guo, G. Chen, Z. Wang, and C. Wang, Int. J. Mater. Product Technol. 45, 1 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. Ishaq, A. R. Sobia, and L. Yan, J. Exp. Nanosci. 5, 213 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Ishaq, Z. Ni, L. Yan, J. Gong, and D. Zhu, Rad. Phys. Chem. 79, 687 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Isomura, T. Murai, T. Nomoto, and Y. Kimoto, J. Synchrotr. Rad. 24, 1 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Sun, G. Wang, X. Li, and C. Li, J. Power Sources 245, 436 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    Y. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, M.A. Kanygin, D. V. Gorodetskiy, I. P. Asanov, D. V. Vyalikh, A. P. Puzyr, and V. S. Bondar, Sci. Rep. 5, 9379 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    X. Zhang, J. Zhou, H. Song, X. Chen, Yu. V. Fedoseeva, A. V. Okotrub, and L. G. Bulusheva, ACS Appl. Mater. Interfaces 6, 17236 (2014).CrossRefGoogle Scholar
  14. 14.
    C. K. Chua and M. Pumera, J. Mater. Chem. 22, 23227 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Yang, B. Kim, K. Kim, J. W. Han, and J. Kim, RSC Adv. 5, 31861 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Barinov, O. B. Malcioglu, S. Fabris, T. Sun, L. Gregoratti, M. Dalmiglio, and M. Kiskinova, J. Phys. Chem. C 113, 9009 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Susi, M. Kaukonen, P. Havu, M. P. Ljungberg, P. Ayala, and E. I. Kauppinen, Beilstein J. Nanotechnol. 5, 121 (2014).CrossRefGoogle Scholar
  18. 18.
    N. A. Davletkildeev, D. V. Stetsko, V. V. Bolotov, Y.A. Stenkin, P. M. Korusenko, and S. N. Nesov, Mater. Lett. 161, 534 (2015).CrossRefGoogle Scholar
  19. 19.
    P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk, and I. P. Khailov, Nucl. Instrum. Methods Phys. Res. B 358, 131 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    K. Fujisawa, T. Tojo, H. Muramatsu, A. L. Elias, S. M. Vega-Diaz, F. Tristan-Lopez, J. H. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. Terrones, Nanoscale 3, 4359 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, Nano Lett. 11, 5401 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk, and E. V. Knyazev, Nucl. Instrum. Methods Phys. Res. B 337, 1 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).CrossRefGoogle Scholar
  24. 24.
    V. V. Bolotov, P. M. Korusenko, S. N. Nesov, and S. N. Povoroznyuk, Phys. Solid State 56, 835 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    N. A. Davletkil’deev, D. V. Sokolov, V. V. Bolotov, and I. A. Lobov, Tech. Phys. Lett. 43, 205 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    L. G. Bulusheva, Yu. V. Fedoseeva, A. G. Kurenya, D. V. Vyalikh, and A. V. Okotrub, J. Phys. Chem. C 119, 25898 (2015).CrossRefGoogle Scholar
  27. 27.
    V. V. Bolotov, S. N. Nesov, P. M. Korusenko, and S. N. Povoroznyuk, Phys. Solid State 56, 1899 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, E. A. Maksimovskiy, B. V. Senkovskiy, Yu. M. Borzdov, and Yu. N. Palyanov, Diamond Rel. Mater. 70, 46 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    S. N. Nesov, V. V. Bolotov, P. M. Korusenko, S. N. Povoroznyuk, and O. Yu. Vilkov, Phys. Solid State 58, 997 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Nesov
    • 1
  • P. M. Korusenko
    • 1
  • V. V. Bolotov
    • 1
  • S. N. Povoroznyuk
    • 1
    • 2
  • D. A. Smirnov
    • 3
    • 4
  1. 1.Omsk Scientific Center, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Omsk State Technical UniversityOmskRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Institute of Solid State PhysicsDresden University of TechnologyDresdenGermany

Personalised recommendations