Physics of the Solid State

, Volume 59, Issue 10, pp 2053–2057 | Cite as

Ultrathin epitaxial cobalt films formed under graphene

  • M. V. Gomoyunova
  • G. S. Grebenyuk
  • D. A. Smirnov
  • I. I. Pronin
Surface Physics, Thin Films


The intercalation of cobalt under a graphene monolayer grown on a Ni(111) single crystal film is studied. The experiments are conducted in ultrahigh vacuum. Samples are characterized in situ by low energy electron diffraction, high-energy-resolution photoelectron spectroscopy using synchrotron radiation, and magnetic linear dichroism in photoemission of Co 3p electrons. New data are obtained on the evolution of the atomic and electronic structure and magnetic properties of the system with increasing thickness of the intercalated cobalt layer in the range up to 2 nm. It is shown that a pseudomorphic epitaxial film of Co(111) having magnetization perpendicular to the surface is formed under the grapheme layer during intercalation in an anomalously wide range of thicknesses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    J. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. Dedkov and E. Voloshina, J. Phys.: Condens. Matter 27, 303002 (2015).Google Scholar
  4. 4.
    Yu. S. Dedkov, M. Fonin, U. Rüdiger and C. Laubschat, Appl. Phys. Lett. 93, 022509 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    M. Weser, E. N. Voloshina, K. Horn, and Y. S. Dedkov, Phys. Chem. Chem. Phys. 13, 7534 (2011).CrossRefGoogle Scholar
  6. 6.
    E. A. Soares, G. J. P. Abreu, S. S. Carara, R. Paniago, V. E. de Carvalho, and H. Chacham, Phys. Rev. B 88, 165410 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    S. Vlaic, A. Kimouche, J. Coraux, B. Santos, A. Locatelli, and N. Rougemaille, Appl. Phys. Lett. 104, 101602 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    R. Decker, J. Brede, N. Atodiresei, V. Caciuc, S. Blugel, and R. Wiesendanger, Phys. Rev. B 87, 041403 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    H. Vita, S. Bottcher, P. Leicht, K. Horn, A. B. Shick, and F. Maca, Phys. Rev. B 90, 165432 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    D. Pacile, S. Lisi, I. di Bernardo, M. Papagno, L. Ferrari, M. Pisarra, M. Caputo, S. K. Mahatha, P. M. Sheverdyaeva, P. Moras, P. Lacovig, S. Lizzit, A. Baraldi, M. G. Betti, and C. Carbone, Phys. Rev. B 90, 195446 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    J. Drnec, S. Vlaic, I. Carlomagno, C. J. Gonzalez, H. Isern, F. Carla, R. Fiala, N. Rougemaille, J. Coraux, and R. Felici, Carbon 94, 554 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Grüneis, K. Kummer, and D. V. Vyalikh, New J. Phys. 11, 073050 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    A. Varykhalov and O. Rader, Phys. Rev. B 80, 035437 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    A. Ya. Tontegode and E. V. Rut’kov, Phys. Usp. 36, 1053 (1993).CrossRefGoogle Scholar
  15. 15.
    Ch. Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    F. Sirotti and G. Rossi, Phys. Rev. B 49, 15682 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    N. Janke-Gilman, M. Hochstrasser, and R. F. Willis, Phys. Rev. B 70, 184439 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov, J. Appl. Phys. 104, 104914 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    I. I. Pronin, M. V. Gomoyunova, S. M. Solov’ev, O. Yu. Vilkov, and D. V. Vyalykh, Phys. Solid State 53, 616 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 56, 865 (2011).CrossRefGoogle Scholar
  21. 21.
    M. V. Gomoyunova, G. S. Grebenyuk, K. M. Popov, and I. I. Pronin, Tech. Phys. 58, 852 (2013).CrossRefGoogle Scholar
  22. 22.
    G. S. Grebenyuk, M. V. Gomoyunova, O. Yu. Vilkov, B. V. Sen’kovskii, and I. I. Pronin, Phys. Solid State 58, 2135 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 59, 1492 (2014).CrossRefGoogle Scholar
  24. 24.
    J.-W. Lee, J.-R. Jeong, S.-C. Shin, J. Kim, and S.-K. Kim, Phys. Rev. B 66, 172409 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    A. D. Vu, J. Coraux, G. Chen, A. T. N’Diaye, A. K. Schmid, and N. Rougemaille, Sci. Rep. 6, 24783 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    G. S. Grebenyuk, O. Yu. Vilkov, A. G. Rybkin, M. V. Gomoyunova, B. V. Senkovskiy, D. Yu. Usachov, D. V. Vyalikh, S. L. Molodtsov, and I. I. Pronin, Appl. Surf. Sci. 392, 715 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Gomoyunova
    • 1
  • G. S. Grebenyuk
    • 1
  • D. A. Smirnov
    • 2
    • 3
  • I. I. Pronin
    • 1
    • 4
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Leibniz Institute for Solid State Physics and Material ResearchDresden University of TechnologyDresdenGermany
  4. 4.St. Petersburg National Research University of Information Technology, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations