Skip to main content
Log in

Temperature behavior of the antiferromagnetic susceptibility of nanoferrihydrite from the measurements of the magnetization curves in fields of up to 250 kOe

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The cross-breeding problem of the temperature dependence of the antiferromagnetic susceptibility of ferrihydrite nanoparticles is considered. Iron ions Fe3+ in ferrihydrite are ordered antiferromagnetically; however, the existence of defects on the surface and in the bulk of nanoparticles induces a noncompensated magnetic moment that leads to a typical superparamagnetic behavior of ensemble of the nanoparticles with a characteristic blocking temperature. In an unblocked state, magnetization curves of such objects are described as a superposition of the Langevin function and the linear-in-field contribution of the antiferromagnetic “core” of the nanoparticles. According to many studies of the magnetization curves performed on ferrihydrite (and related ferritin) nanoparticles in fields to 60 kOe, dependence χAF(T) decreases as temperature increases, which was related before to the superantiferromagnetism effect. As the magnetic field range increases to 250 kOe, the values of χAF obtained from an analysis of the magnetization curves become lower in magnitude; however, the character of the temperature evolution of χAF is changed: now, dependence χAF(T) is an increasing function. The latter is typical for a system of AF particles with random orientation of the crystallographic axes. To correctly determine the antiferromagnetic susceptibility of AF nanoparticles (at least, ferrihydrite) and to search for effects related to the superantiferromagnetism effect, it is necessary to use in experiments the range of magnetic field significantly higher than that the standard value 60 kOe used in most experiments. The study of the temperature evolution of the magnetization curves shows that the observed crossover is due to the existence of small magnetic moments in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mørup, D. E. Madsen, C. Fradsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  2. D. E. Madsen, S. Mørup, and M. F. Hansen, J. Magn. Magn. Mater. 305, 95 (2006).

    Article  ADS  Google Scholar 

  3. Yu. L. Raikher and V. I. Stepanov, J. Phys.: Condens. Matter. 20, 204120 (2008).

    ADS  Google Scholar 

  4. N. J. O. Silva, A. Millan, F. Palacio, E. Kampert, U. Zeitler, and V. S. Amaral, Phys. Rev. B 79, 104405 (2009).

    Article  ADS  Google Scholar 

  5. Yu. L. Raikher and V. I. Stepanov, J. Exp. Theor. Phys. 107, 435 (2008).

    Article  ADS  Google Scholar 

  6. Yu. L. Raikher, V. I. Stepanov, S. V. Stolyar, V. P. Ladygina, D. A. Balaev, L. A. Ishchenko, and M. Balasoiu, Phys. Solid State 52, 298 (2010).

    Article  ADS  Google Scholar 

  7. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).

    Article  ADS  Google Scholar 

  8. S. D. Tiwari and K. P. Rajeev, Solid State Commun. 152, 1080 (2012).

    Article  ADS  Google Scholar 

  9. S. A. Makhlouf, H. Al-Attar, and R. H. Kodama, Solid State Commun. 145, 1 (2008).

    Article  ADS  Google Scholar 

  10. A. Punnoose and M. S. Seehra, J. Appl. Phys. 91, 7766 (2002).

    Article  ADS  Google Scholar 

  11. A. A. Lepeshev, I. V. Karpov, A. V. Ushakov, D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, D. A. Velikanov, and M. I. Petrov, J. Supercond. Nov. Magn. 30, 931 (2017).

    Article  Google Scholar 

  12. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    Article  ADS  Google Scholar 

  13. S. Giri, M. Patra, and S. Majumdar, J. Phys.: Condens. Matter 23, 073201 (2011).

    ADS  Google Scholar 

  14. A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, O. A. Bayukov, O. N. Pletnev, S. S. Yakushkin, G. M. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 118, 213901 (2015).

    Article  ADS  Google Scholar 

  15. C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, J. Magn. Magn. Mater. 241, 430 (2002).

    Article  ADS  Google Scholar 

  16. D. A. Balaev, A. A. Dubrovskiy, K. A. Shaykhutdinov, O. A. Bayukov, S. S. Yakushkin, G. A. Bukhtiyarova, and O. N. Martyanov, J. Appl. Phys. 114, 163911 (2013).

    Article  ADS  Google Scholar 

  17. M. J. Martínez-Pérez, R. de Miguel, C. Carbonera, M. Martínez-Júlvez, A. Lostao, C. Piquer, C. Gómez-Moreno, J. Bartolomé, and F. Luis, Nanotechnology 21, 465707 (2010).

    Article  Google Scholar 

  18. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005).

    Article  ADS  Google Scholar 

  19. D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and E. D. Khilazheva, JETP Lett. 98, 139 (2013).

    Article  ADS  Google Scholar 

  20. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).

    Article  ADS  Google Scholar 

  21. A. Punnoose, T. Phanthavady, M. S. Seehra, N. Shah, and G. P. Huffman, Phys. Rev. B 69, 054425 (2004).

    Article  ADS  Google Scholar 

  22. M. S. Seehra, V. Singh, X. Song, S. Bali, and E. M. Eyring, J. Phys. Chem. Solids 71, 1362 (2010).

    Article  ADS  Google Scholar 

  23. C. Gilles, P. Bonville, K. K. W. Wong, and S. Mann, Eur. Phys. J. B 17, 417 (2000).

    Article  ADS  Google Scholar 

  24. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, S. V. Semenov, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and L. A. Ishchenko, J. Exp. Theor. Phys. 119, 479 (2014).

    Article  Google Scholar 

  25. Chandni Rani and S. D. Tiwari, J. Magn. Magn. Mater. 385, 272 (2015).

    Article  ADS  Google Scholar 

  26. M. S. Seehra, V. S. Babu, A. Manivannan, and J. W. Lynn, Phys. Rev. B 61, 3513 (2000).

    Article  ADS  Google Scholar 

  27. S. V. Stolyar, R. N. Yaroslavtsev, R. S. Iskhakov, O. A. Bayukov, D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, V. P. Ladygina, A. M. Vorotynov, and M. N. Volochaev, Phys. Solid State 59, 555 (2017).

    Article  ADS  Google Scholar 

  28. L. Néel, C.R. Acad. Sci. Paris 253, 1286 (1961).

    Google Scholar 

  29. L. Néel, C.R. Acad. Sci. Paris 253, 203 (1961).

    Google Scholar 

  30. Ch. Rani and S. D. Tiwari, Physica B 513, 58 (2017).

    Article  ADS  Google Scholar 

  31. S. V. Stolyar, O. A. Bayukov, Yu. L. Gurevich, V. P. Ladygina, R. S. Iskhakov, and P. P. Pustoshilov, Inorg. Mater. 43, 638 (2007).

    Article  Google Scholar 

  32. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, Tech. Phys. Lett. 41, 705 (2015).

    Article  ADS  Google Scholar 

  33. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, O. A. Bayukov, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Magn. Magn. Mater. 410, 71 (2016).

    Article  Google Scholar 

  34. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. V. Semenov, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 58, 287 (2016).

    Article  ADS  Google Scholar 

  35. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    Article  ADS  Google Scholar 

  36. D. A. Balaev, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, R. N. Yaroslavtsev, O. A. Bayukov, A. M. Vorotynov, M. N. Volochaev, and A. A. Dubrovskii, Phys. Solid State 58, 1782 (2016).

    Article  ADS  Google Scholar 

  37. J. C. Denardin, A. L. Brandl, M. Knobel, P. Panissod, A. B. Pakhomov, H. Liu, and X. X. Zhang, Phys. Rev. B 65, 064422 (2002).

    Article  ADS  Google Scholar 

  38. D. A. Balaev, I. S. Poperechny, A. A. Krasikov, K. A. Shaikhutdinov, A. A. Dubrovskiy, S. I. Popkov, A. D. Balaev, S. S. Yakushkin, G. A. Bukhtiyarova, O. N. Martyanov, and Yu. L. Raikher, J. Appl. Phys. 117, 063908 (2015).

    Article  ADS  Google Scholar 

  39. D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, S. I. Popkov, A. D. Balaev, K. A. Shaikhutdinov, V. L. Kirillov, and O. N. Mart’yanov, Phys. Solid State 59 (2017), in press.

    Google Scholar 

  40. B. P. Khrustalev, A. D. Balaev, and V. M. Sosnin, Phys. Solid State 37, 911 (1995).

    ADS  Google Scholar 

  41. L. Néel, C.R. Acad. Sci. Paris 252, 4075 (1961).

    Google Scholar 

  42. J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Chiolero, and D. Loss, Phys. Rev. B 60, 3453 (1999).

    Article  ADS  Google Scholar 

  43. T. H. Lee, K.-Y. Choi, G.-H. Kim, B. J. Suh, and Z. H. Jang, Phys. Rev. B 90, 184411 (2014).

    Article  ADS  Google Scholar 

  44. M. Balasoiu, S. V. Stolyar, R. S. Iskhakov, L. A. Ischenko, Y. L. Raikher, A. I. Kuklin, O. L. Orelovich, Yu. S. Kovalev, and T. S. Kurkin, Roman. J. Phys. 55, 782 (2010).

    Google Scholar 

  45. S. V. Stolyar, O. A. Bayukov, V. P. Ladygina, R. S. Iskhakov, L. A. Ishchenko, V. Yu. Yakovchuk, K. G. Dobretsov, A. I. Pozdnyakov, and O. E. Piksina, Phys. Solid State 53, 100 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, S.I. Popkov, A.A. Krasikov, A.D. Balaev, A.A. Dubrovskiy, S.V. Stolyar, R.N. Yaroslavtsev, V.P. Ladygina, R.S. Iskhakov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 10, pp. 1920–1926.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Popkov, S.I., Krasikov, A.A. et al. Temperature behavior of the antiferromagnetic susceptibility of nanoferrihydrite from the measurements of the magnetization curves in fields of up to 250 kOe. Phys. Solid State 59, 1940–1946 (2017). https://doi.org/10.1134/S1063783417100031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417100031

Navigation