Advertisement

Physics of the Solid State

, Volume 59, Issue 8, pp 1623–1628 | Cite as

The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles

  • E. Yu. Stovpiaga
  • D. A. Eurov
  • D. A. Kurdyukov
  • A. N. Smirnov
  • M. A. Yagovkina
  • V. Yu. Grigorev
  • V. V. Romanov
  • D. R. Yakovlev
  • V. G. Golubev
Low-Dimensional Systems

Abstract

The method of obtaining nanoclusters α-Fe2O3 in the pores of monodisperse spherical particles of mesoporous silica (mSiO2) by a single impregnation of the pores with a melt of crystalline hydrate of ferric nitrate and its subsequent thermal destruction has been proposed. Fe3O4 nanoclusters are synthesized from α-Fe2O3 in the pores by reducing in thermodynamically equilibrium conditions. Then particles containing Fe3O4 were annealed in oxygen for the conversion of Fe3O4 back to α-Fe2O3. In the result, the particles with the structure of the core-shell mSiO2/Fe3O4@mSiO2/α-Fe2O3 are obtained. The composition and structure of synthesized materials as well as the field dependence of the magnetic moment on the magnetic field strength have been investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Hu, Y. G. Tee, and W. B. Lin, J. Am. Chem. Soc. 127, 12486 (2005).CrossRefGoogle Scholar
  2. 2.
    L. Huo, W. Li, L. Lu, H. Cui, S. Xi, J. Wang, B. Zhao, Y. Shen, and Z. Lu, Chem. Mater. 12, 790 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Kalantari, M. Yousefpour, and Z. Taherian, Rare Met. 4, 1 (2016).Google Scholar
  4. 4.
    S. Xuan, F. Wang, J. M. Y. Lai, K. W. Y. Sham, Y. X. J. Wang, S.-F. Lee, J. C. Yu, C. H. K. Cheng, and K. C. Leung, Appl. Mater. Int. 3, 237 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. V. Kolen’ko, M. Bañobre-López, C. Rodríuez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M. F. Cerqueira, D. Y. Petrovykh, K. Kovnir, O. I. Lebedev, and J. Rivas, J. Phys. Chem. C 118, 8691 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Srajer, L. H. Lewis, S. P. Bader, A. J. Epstein, C. S. Fadley, E. E. Fullerton, A. Hoffmann, J. B. Ortright, K. M. Krishnan, S. A. Majetich, T. S. Rahman, C. A. Ross, M. B. Salamon, I. K. Schuller, T. C. Schulthess, and J. Z. Sun, J. Magn. Magn. Mater. 307, 1 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Baranov and S. P. Gubin, Radioelektron. Nanosist. Inform. Tekhnol. 1, 129 (2009).Google Scholar
  8. 8.
    I. Ursachi, A. Stancu, and A. Vasile, J. Colloid Interf. Sci. 377, 184 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. Fröba, R. Köhn, and G. Bouffaud, Chem. Mater. 11, 2858 (1999).CrossRefGoogle Scholar
  10. 10.
    S. Rostamizadeh, N. Shadjou, M. Azad, and N. Jalali, Catal. Commun. 26, 218 (2012).CrossRefGoogle Scholar
  11. 11.
    H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu, and G. H. Li, Chem. Mater. 24, 4572 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Lu, E. L. Salabas, and F. Schuth, Angew. Chem. Int. Ed. 46, 1222 (2007).CrossRefGoogle Scholar
  13. 13.
    M. A. Gonzalez-Fernandez, T. E. Torres, M. Andrés-Vergés, R. Costo, P. Presa, C. J. Serna, M. P. Morales, C. Marquina, M. R. Ibarra, and G. F. Goya, J. Solid State Chem. 182, 2779 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, S. A. Yakovlev, D. A. Kirilenko, and V. G. Golubev, Phys. Solid State 56, 1033 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Tian, D. Wu, X. Jia, B. Yu, and S. Zhan, J. Nanomater. 2011, 1 (2011).Google Scholar
  16. 16.
    J. H. Lee, J. Jang, J. Choi, S. H. Moon, S. H. Noh, J. Kim, J. Kim, I. Kim, K. I. Park, and J. Cheon, Nat. Nanotech. 6, 418 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    M. Estrader, A. López-Ortega, I. V. Golosovsky, S. Estradé, A. G. Roca, G. Salazar-Alvarez, L. López-Conesa, D. Tobia, E. Winkler, J. D. Ardisson, W. A. A. Macedo, A. Morphis, M. Vasilakaki, K. N. Trohidou, A. Gukasov, et al., Nanoscale 7, 3002 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37, 378 (2011).CrossRefGoogle Scholar
  19. 19.
    E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    V. Yu. Davydov, V. G. Golubev, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, P. Brogueira, and R. Schwarz, Nanotechnology 11, 291 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    S. A. Grudinkin, S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, and V. G. Golubev, J. Phys. Chem. C 112, 17855 (2008).CrossRefGoogle Scholar
  23. 23.
    D. A. Kurdyukov, A. B. Pevtsov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigor’ev, V. V. Romanov, N. T. Bagraev, and V. G. Golubev, Phys. Solid State 58, 1216 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    K. Wieczorek-Ciurowa and A. J. Kozak, J. Therm. Anal. Calorim. 58, 647 (1999).CrossRefGoogle Scholar
  25. 25.
    K. N. Orekhova, D. A. Eurov, D. A. Kurdyukov, V.G. Golubev, D. A. Kirilenko, V. A. Kravets, and M. V. Zamoryanskaya, J. Alloys Compd. 678, 434 (2016).CrossRefGoogle Scholar
  26. 26.
    I. V. Golosovsky, I. Mirebeau, V. P. Sakhnenko, D. A. Kurdyukov, and Y. A. Kumzerov, Phys. Rev. B 72, 144409 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    I. V. Golosovsky, I. Mirebeau, E. Elkaim, D. A. Kurdyukov, and Y. A. Kumzerov, Eur. Phys. J. B 47, 55 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Micropous Mesopous Mater. 223, 225 (2016).CrossRefGoogle Scholar
  29. 29.
    D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpyaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    A. M. Jubb and H. C. Allen, Appl. Mater. Interf. 2, 2804 (2010).CrossRefGoogle Scholar
  31. 31.
    T. P. Martin, R. Merlin, D. R. Huffman, and M. Cardona, Solid State Commun. 22, 565 (1977).ADSCrossRefGoogle Scholar
  32. 32.
    K. F. McCarty, Solid State Commun. 68, 799 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    B. Verdes, I. Chira, M. Virgolichi, and V. Moise, U.P.B. Sci. Bull. B 74, 257 (2012).Google Scholar
  34. 34.
    U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory (VCH, Weinheim, 1991).Google Scholar
  35. 35.
    R. M. Cornell, R. Giovanoli, and W. Shneider, J. Chem. Technol. 46, 115 (1989).Google Scholar
  36. 36.
    G. Schefer, Chemical Transport Reactions (Elsevier, Academic, New York, 1964).Google Scholar
  37. 37.
    G. M. Gajiev, D. A. Kurdyukov, and V. V. Travnikov, Nanotechnology 17, 5349 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    C. V. Thach, N. H. Hai, and N. Chau, J. Korean Phys. Soc. 52, 1332 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    J. Kirschvink, D. S. Jones, and B. J. MacFadden, Magnetite Biomineralization and Magnetoreception in Organisms (Springer, New York, 1985).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. Yu. Stovpiaga
    • 1
  • D. A. Eurov
    • 1
  • D. A. Kurdyukov
    • 1
    • 2
  • A. N. Smirnov
    • 1
  • M. A. Yagovkina
    • 1
  • V. Yu. Grigorev
    • 3
  • V. V. Romanov
    • 3
  • D. R. Yakovlev
    • 4
  • V. G. Golubev
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  4. 4.Experimentelle Physik 2Technische Universitat at DortmundDortmundGermany

Personalised recommendations