Physics of the Solid State

, Volume 59, Issue 8, pp 1512–1519 | Cite as

An experimental and theoretical study of Ni impurity centers in Ba0.8Sr0.2TiO3

Dielectrics

Abstract

The local environment and the charge state of a nickel impurity in cubic Ba0.8Sr0.2TiO3 are studied by XAFS spectroscopy. According to the XANES data, the mean Ni charge state is ~2.5+. An analysis of the EXAFS spectra and their comparison with the results of first-principle calculations of the defect geometry suggest that Ni2+ ions are in a high-spin state at the B sites of the perovskite structure and the difference of charges of Ni2+ and Ti4+ is mainly compensated by distant oxygen vacancies. In addition, a considerable amount of nickel in the sample is in a second phase BaNiO3 − δ. The measurements of the lattice parameter show a decrease in the unit cell volume upon doping, which can indicate the existence of a small amount of Ni4+ ions at the B site.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Sturman and V. M. Fridkin, Photogalvanic Effect in Media without Symmetry Center and Related Phenomena (Nauka, Moscow, 1992) [in Russian].Google Scholar
  2. 2.
    A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    M. Qin, K. Yao, and Y. C. Liang, Appl. Phys. Lett. 93, 122904 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. Blasse, P. H. M. de Korte, and A. Mackor, J. Inorg. Nucl. Chem. 43, 1499 (1981).CrossRefGoogle Scholar
  6. 6.
    J. W. Bennett, I. Grinberg, and A. M. Rappe, J. Am. Chem. Soc. 130, 17409 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Y. Gou, J. W. Bennett, H. Takenaka, and A. M. Rappe, Phys. Rev. B 83, 205115 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Lebedev, I. A. Sluchinskaya, A. Erko, and V. F. Kozlovskii, JETP Lett. 89, 457 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Bull. Russ. Acad. Sci.: Phys. 74, 1235 (2010).CrossRefGoogle Scholar
  10. 10.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, in Proceedings of the 19th All-Russia Conference on Ferroelectric Physics, Moscow, June, 2011, p. 116.Google Scholar
  11. 11.
    I. A. Sluchinskaya, A. I. Lebedev, V. F. Kozlovskii, and A. Erko, in Proceedings of the 8th National conference on X-Ray, Synchrotron Radiations, Neutrons and Electrons for Study of Nanosystems and Materials. Nano-, Bio-, Info-, Cognitive Technologies, Moscow, 2011, p. 347.Google Scholar
  12. 12.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, J. Adv. Dielect. 3, 1350031 (2013).CrossRefGoogle Scholar
  13. 13.
    I. A. Sluchinskaya, A. I. Lebedev, and A. Erko, Phys. Solid State 56, 449 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    R. M. Glaister and H. F. Kay, Proc. Phys. Soc. 76, 763 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    Y. C. Huang and W. H. Tuan, Mater. Chem. Phys. 105, 320 (2007).CrossRefGoogle Scholar
  16. 16.
    F. Boujelben, F. Bahri, C. Boudaya, A. Maalej, H. Khemakhem, A. Simon, and M. Maglione, J. Alloys Compd. 481, 559 (2009).CrossRefGoogle Scholar
  17. 17.
    S. K. Das, R. N. Mishra, and B. K. Roul, Solid State Commun. 191, 19 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    R. Böttcher, H. T. Langhammer, and T. Müller, J. Phys.: Condens. Matter 23, 115903 (2011).ADSGoogle Scholar
  19. 19.
    E. Duverger, B. Jannot, M. Maglione, and M. Jannin, Solid State Ion. 73, 139 (1994).CrossRefGoogle Scholar
  20. 20.
    Y. C. Huang and W. H. Tuan, J. Electroceram. 18, 183 (2007).CrossRefGoogle Scholar
  21. 21.
    J. Q. Huang, P. Y. Du, W. J. Weng, and G. R. Han, J. Electroceram. 21, 394 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. Kumar, Md A. Mohiddon, A. Srivastava, and K. L. Yadav, Ind. J. Eng. Mater. Sci. 16, 390 (2009).Google Scholar
  23. 23.
    Th. W. Kool, S. Lenjer, and O. F. Schirmer, J. Phys.: Condens. Matter 19, 496214 (2007).Google Scholar
  24. 24.
    S. Lenjer, R. Scharfschwerdt, Th. W. Kool, and O. F. Schirmer, Solid State Commun. 116, 133 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    A. I. Lebedev and I. A. Sluchinskaya, Bull. Russ. Acad. Sci.: Phys. 80, 1068 (2016).CrossRefGoogle Scholar
  26. 26.
    A. I. Lebedev and I. A. Sluchinskaya, Ferroelectrics 501, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    H. T. Langhammer, T. Müller, T. Walther, R. Böttcher, D. Hesse, E. Pippel, and S. G. Ebbinghaus, J. Mater. Sci. 51, 10429 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    S. Geprägs, A. Brandlmaier, M. Opel, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 96, 142509 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    C. Pecharroman, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, and J. S. Moya, Adv. Mater. 13, 1541 (2001).CrossRefGoogle Scholar
  30. 30.
    W. H. Tuan and S. S. Chen, Ferroelectrics 381, 167 (2009).CrossRefGoogle Scholar
  31. 31.
    IFEFFIT Project. http://cars9.uchicago.edu/ifeffit/.Google Scholar
  32. 32.
    FEFF Project. http://leonardo.phys.washington.edu/feff/.Google Scholar
  33. 33.
    K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014).CrossRefGoogle Scholar
  34. 34.
    V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).ADSGoogle Scholar
  35. 35.
    A. V. Postnikov, A. I. Poteryaev, and G. Borstel, Ferroelectrics 206, 69 (1998).CrossRefGoogle Scholar
  36. 36.
    M. McQuarrie, J. Am. Ceram. Soc. 38, 444 (1955).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations