Advertisement

Physics of the Solid State

, Volume 59, Issue 6, pp 1118–1126 | Cite as

Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions

  • V. S. BondarevEmail author
  • E. A. Mikhaleva
  • I. N. Flerov
  • M. V. Gorev
Ferroelectricity

Abstract

The direct and indirect measurements of intensive electrocaloric effect in a triglycine sulfate ferroelectric crystal are performed under equilibrium and nonequilibrium thermodynamic conditions implemented in the adiabatic calorimeter. The effect of the electric field parameters (frequency, profile, and strength) on the value of the effect and degree of its reversibility are studied. The difference between the temperature variation values in a switched-on and switched-off dc field under quasi-isothermal conditions is established. The low-frequency periodic electric field induces the temperature gradient along the electrocaloric element and heat flux from its free end to the thermostated base. A significant excess of the field switching-off rate over the switching-on rate leads to a noticeable intensification of the cooling effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Tishin and Y. Spichkin, The Magnetocaloric Effect and Its Application (Institute of Physics, Bristol, Philadelphia, 2003).CrossRefGoogle Scholar
  2. 2.
    K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).CrossRefADSGoogle Scholar
  3. 3.
    J. F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).CrossRefADSGoogle Scholar
  4. 4.
    M. Valant, Prog. Mater. Sci. 57, 980 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Smith, C. R. H. Bahl, R. Bjørk, K. Engelbrecht, K. K. Nielsen, and N. Pryds, Adv. Energy Mater. 2, 1288 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 7, 067153 (2015).CrossRefADSGoogle Scholar
  7. 7.
    X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).CrossRefADSGoogle Scholar
  8. 8.
    I. N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, Phys. Solid State 57 (3), 429 (2015).CrossRefADSGoogle Scholar
  9. 9.
    B. Asbani, J.-L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, and M. El. Marssi, Appl. Phys. Lett. 106, 042902 (2015).CrossRefADSGoogle Scholar
  10. 10.
    H. Liu and X. Yang, AIP Adv. 5, 117134 (2015).CrossRefADSGoogle Scholar
  11. 11.
    H. Y. Lee, K. H. Cho, and H.-D. Nam, Ferroelectrics 334, 165 (2006).CrossRefGoogle Scholar
  12. 12.
    A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science (Washington) 311, 1270 (2006).CrossRefADSGoogle Scholar
  13. 13.
    A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).CrossRefADSGoogle Scholar
  14. 14.
    A. S. Starkov, S. F. Karmanenko, O. V. Pakhomov, A. V. Es’kov, D. Semikin, and J. Hagberg, Phys. Solid State 51 (7), 1510 (2009).CrossRefADSGoogle Scholar
  15. 15.
    I. Starkov and A. Starkov, Ferroelectrics 480, 102 (2015).CrossRefGoogle Scholar
  16. 16.
    A. V. Es’kov, S. F. Karmanenko, O. V. Pakhomov, and A. S. Starkov, Phys. Solid State 51 (8), 1574 (2009).CrossRefADSGoogle Scholar
  17. 17.
    V. S. Bondarev, E. A. Mikhaleva, M. V. Gorev, and I. N. Flerov, Phys. Status Solidi B 253, 2073 (2016).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, Phys. Solid State 50 (11), 2115 (2008).CrossRefADSGoogle Scholar
  19. 19.
    S. A. Taraskin, B. A. Strukov, and V. A. Meleshina, Sov. Phys. Solid State 12 (5), 1089 (1970).Google Scholar
  20. 20.
    E. F. Dudnik, V. M. Duda, and A. I. Kushnarev, Phys. Solid State 42 (1), 139 (2000).CrossRefADSGoogle Scholar
  21. 21.
    Y. Liu, J. F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).CrossRefADSGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1964; Butterworth–Heinemann, Oxford, 1980).Google Scholar
  23. 23.
    L. Tocado, E. Palacios, and R. Burriel, J. Magn. Magn. Mater. 290–291, 719 (2005).CrossRefGoogle Scholar
  24. 24.
    B. A. Strukov, Sov. Phys. Crystallogr. 11 (6), 757 (1966).Google Scholar
  25. 25.
    Y. Bai, G.-P. Zheng, and S.-Q. Shi, J. Appl. Phys. 108, 104102 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. S. Bondarev
    • 1
    • 2
    Email author
  • E. A. Mikhaleva
    • 1
  • I. N. Flerov
    • 1
    • 2
  • M. V. Gorev
    • 1
    • 2
  1. 1.Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center,” Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations