Skip to main content
Log in

Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions

  • Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The direct and indirect measurements of intensive electrocaloric effect in a triglycine sulfate ferroelectric crystal are performed under equilibrium and nonequilibrium thermodynamic conditions implemented in the adiabatic calorimeter. The effect of the electric field parameters (frequency, profile, and strength) on the value of the effect and degree of its reversibility are studied. The difference between the temperature variation values in a switched-on and switched-off dc field under quasi-isothermal conditions is established. The low-frequency periodic electric field induces the temperature gradient along the electrocaloric element and heat flux from its free end to the thermostated base. A significant excess of the field switching-off rate over the switching-on rate leads to a noticeable intensification of the cooling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tishin and Y. Spichkin, The Magnetocaloric Effect and Its Application (Institute of Physics, Bristol, Philadelphia, 2003).

    Book  Google Scholar 

  2. K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).

    Article  ADS  Google Scholar 

  3. J. F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).

    Article  ADS  Google Scholar 

  4. M. Valant, Prog. Mater. Sci. 57, 980 (2012).

    Article  Google Scholar 

  5. A. Smith, C. R. H. Bahl, R. Bjørk, K. Engelbrecht, K. K. Nielsen, and N. Pryds, Adv. Energy Mater. 2, 1288 (2012).

    Article  Google Scholar 

  6. S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 7, 067153 (2015).

    Article  ADS  Google Scholar 

  7. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).

    Article  ADS  Google Scholar 

  8. I. N. Flerov, E. A. Mikhaleva, M. V. Gorev, and A. V. Kartashev, Phys. Solid State 57 (3), 429 (2015).

    Article  ADS  Google Scholar 

  9. B. Asbani, J.-L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, and M. El. Marssi, Appl. Phys. Lett. 106, 042902 (2015).

    Article  ADS  Google Scholar 

  10. H. Liu and X. Yang, AIP Adv. 5, 117134 (2015).

    Article  ADS  Google Scholar 

  11. H. Y. Lee, K. H. Cho, and H.-D. Nam, Ferroelectrics 334, 165 (2006).

    Article  Google Scholar 

  12. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science (Washington) 311, 1270 (2006).

    Article  ADS  Google Scholar 

  13. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).

    Article  ADS  Google Scholar 

  14. A. S. Starkov, S. F. Karmanenko, O. V. Pakhomov, A. V. Es’kov, D. Semikin, and J. Hagberg, Phys. Solid State 51 (7), 1510 (2009).

    Article  ADS  Google Scholar 

  15. I. Starkov and A. Starkov, Ferroelectrics 480, 102 (2015).

    Article  Google Scholar 

  16. A. V. Es’kov, S. F. Karmanenko, O. V. Pakhomov, and A. S. Starkov, Phys. Solid State 51 (8), 1574 (2009).

    Article  ADS  Google Scholar 

  17. V. S. Bondarev, E. A. Mikhaleva, M. V. Gorev, and I. N. Flerov, Phys. Status Solidi B 253, 2073 (2016).

    Article  ADS  Google Scholar 

  18. A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, Phys. Solid State 50 (11), 2115 (2008).

    Article  ADS  Google Scholar 

  19. S. A. Taraskin, B. A. Strukov, and V. A. Meleshina, Sov. Phys. Solid State 12 (5), 1089 (1970).

    Google Scholar 

  20. E. F. Dudnik, V. M. Duda, and A. I. Kushnarev, Phys. Solid State 42 (1), 139 (2000).

    Article  ADS  Google Scholar 

  21. Y. Liu, J. F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1964; Butterworth–Heinemann, Oxford, 1980).

    Google Scholar 

  23. L. Tocado, E. Palacios, and R. Burriel, J. Magn. Magn. Mater. 290–291, 719 (2005).

    Article  Google Scholar 

  24. B. A. Strukov, Sov. Phys. Crystallogr. 11 (6), 757 (1966).

    Google Scholar 

  25. Y. Bai, G.-P. Zheng, and S.-Q. Shi, J. Appl. Phys. 108, 104102 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Bondarev.

Additional information

Original Russian Text © V.S. Bondarev, E.A. Mikhaleva, I.N. Flerov, M.V. Gorev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 6, pp. 1097–1105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, V.S., Mikhaleva, E.A., Flerov, I.N. et al. Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Phys. Solid State 59, 1118–1126 (2017). https://doi.org/10.1134/S1063783417060051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417060051

Navigation