Physics of the Solid State

, Volume 59, Issue 5, pp 914–919 | Cite as

Induced pyroelectric effect in a planar field

  • V. B. ShirokovEmail author
  • A. G. Razumnaya
  • Yu. I. Yuzyuk


The effect of an induced deformation and the influence of a planar electric field on the ground state of the ferroelectric Ba0.7Sr0.3O3 thin films deposited on (001)-oriented cubic substrates have been investigated. The dependence of the pyroelectric coefficient on the electric field strength E x in the film plane has been constructed for the values of the induced strain that correspond to different ground states of the film. In the regions where the film can operate in the mode of a dielectric bolometer, there is an electric field in which the pyroelectric coefficient reaches the extreme value. There is also a value of the induced strain at which the pyroelectric effect is most pronounced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, et al., Nature (London) 430 (7001), 758 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science (Washington) 306 (5698), 1005 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram. 11, 5 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems (Springer-Verlag, London, 2009).CrossRefGoogle Scholar
  5. 5.
    R. W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    R. W. Whatmore, Ferroelectrics 118 (1), 241 (1991).CrossRefGoogle Scholar
  7. 7.
    P. Muralt, Rep. Prog. Phys. 64, 1339 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    R. W. Whatmore, Q. Zhang, C. P. Shaw, R. A. Dorey, and J. R. Alcock, Phys. Scr., T 129, 6 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    J. F. Scott, Science (Washington) 315, 954 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    B. W. Wessels, Annu. Rev. Mater. Res. 37, 659 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    V. B. Shirokov, V. I. Torgashev, A. A. Bakirov, and V. V. Lemanov, Phys. Rev. B: Condens. Matter 73 (10), 104116 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    V. B. Shirokov, Yu. I. Yuzyuk, B. Dkhil, and V. V. Lemanov, Phys. Rev. B: Condens. Matter 79 (14), 144118 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1964).zbMATHGoogle Scholar
  16. 16.
    R. Watton, Ferroelectrics 91 (1), 87 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. B. Shirokov
    • 1
    • 2
    Email author
  • A. G. Razumnaya
    • 2
  • Yu. I. Yuzyuk
    • 2
  1. 1.Southern Scientific Center of Russian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations