Advertisement

Physics of the Solid State

, Volume 59, Issue 5, pp 904–908 | Cite as

Magnetization dynamics in epitaxial films induced by femtosecond optical pulses near the absorption edge

  • I. V. Savochkin
  • M. A. KozhaevEmail author
  • A. I. Chernov
  • A. N. Kuz’michev
  • A. K. Zvezdin
  • V. I. Belotelov
Magnetism

Abstract

Peculiarities of the magnetization dynamics induced in iron garnet films by laser pulses with a frequency detuning near the absorption edge have been studied experimentally. It has been found that the dependence of the observed signal amplitude on the pumping energy becomes nonmonotonic with an increase in the pumping frequency. At the same time, the pumping energy corresponding to the maximum amplitude of the signal and this maximum signal amplitude decrease. Moreover, the signal amplitude starts to decrease with an increase in the pumping energy at frequencies within the absorption band. The observed phenomena are possibly caused by generation of magnetostatic spin waves and the effect of ultrafast optically induced demagnetization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. M. Reid, A. V. Kimel, A. Kirilyuk, J. F. Gregg, and T. Rasing, Phys. Rev. Lett. 105, 107402 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    M. L. Plumer, J. van Ek, and W. C. Cain, arXiv:1201.5543 (2012).Google Scholar
  3. 3.
    A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).CrossRefGoogle Scholar
  4. 4.
    A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, V. N. Gridnev, A. Kirilyuk, and T. Rasing, Phys. Rev. Lett. 99, 167205 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, V. N. Gridnev, P. A. Usachev, A. Kirilyuk, and T. Rasing, Phys. Rev. B: Condens. Matter 78, 104301 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, Phys. Rev. Lett. 103, 117201 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    F. Atoneche, A. M. Kalashnikova, A. V. Kimel, A. Stupakiewicz, A. Maziewski, A. Kirilyuk, and T. Rasing, Phys. Rev. B: Condens. Matter 81, 214440 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    V. I. Belotelov and A. K. Zvezdin, Phys. Rev. B: Condens. Matter 86, 155133 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    T.-M. Liu, T. Wang, A. H. Reid, M. Savoini, X. Wu, B. Koene, P. Granitzka, C. E. Graves, D. J. Higley, Z. Chen, G. Razinskas, M. Hantschmann, A. Scherz, J. Stohr, A. Tsukamoto, et al., Nano Lett. 15, 6862 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982, Butterworth–Heinemann, Oxford, 1984).Google Scholar
  11. 11.
    A. V. Kimel and A. K. Zvezdin, Low Temp. Phys. 41 (9), 682 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, Nature (London) 435, 655 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, Nat. Photonics 6, 662 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, Phys. Rev. B: Condens. Matter 73, 14421 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M. Deb, M. Vomir, J.-L. Rehspringer, and J.-Y. Bigot, Appl. Phys. Lett. 107, 252404 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Chernov, M. A. Kozhaev, P. M. Vetoshko, D. V. Dodonov, A. R. Prokopov, A. G. Shumilov, A. N. Shaposhnikov, V. N. Berzhanskii, A. K. Zvezdin, and V. I. Belotelov, Phys. Solid State 58 (6), 1128 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Kozhaev, A. I. Chernov, I. V. Savochkin, A. N. Kuz’michev, A. K. Zvezdin, and V. I. Belotelov, JETP Lett. 104 (12), 833 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    E. Beaurepaire, G. M. Turner, S. M. Harrel, M. C. Beard, J.-Y. Bigot, and C. A. Schmuttenmaer, Appl. Phys. Lett. 84, 3465 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    M. van Kampen, C. Jozsa, J. T. Kohlhepp, P. LeClair, L. Lagae, W. J. M. de Jonge, and B. Koopmans, Phys. Rev. Lett. 88, 227201 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    M. B. Agrant, S. I. Ashitkov, A. B. Granovskii, and G. I. Rukman, Sov. Phys. JETP 59 (4), 804 (1984).Google Scholar
  23. 23.
    A. Kirilyuk, A.V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Savochkin
    • 1
  • M. A. Kozhaev
    • 2
    • 3
    Email author
  • A. I. Chernov
    • 2
    • 3
  • A. N. Kuz’michev
    • 2
    • 4
  • A. K. Zvezdin
    • 2
    • 3
    • 4
  • V. I. Belotelov
    • 1
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.International Center of Quantum Optics and Quantum TechnologiesRussian Quantum CenterSkolkovo, MoscowRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations