Advertisement

Physics of the Solid State

, Volume 59, Issue 5, pp 860–865 | Cite as

Atomistic simulation of ferroelectric–ferroelastic gadolinium molybdate

  • V. B. DudnikovaEmail author
  • E. V. Zharikov
Dielectrics

Abstract

Gadolinium molybdate Gd2(MoO4)3 orthorhombic ferroelectric ferroelastic (β'-phase) is simulated by the method of interatomic potentials. The simulation is performed using the GULP 4.0.1 code (General Utility Lattice Program), which is based on the minimization of the energy of the crystal structure. Parameters of the gadolinium–oxygen interatomic interaction potentials are determined by fitting to the experimental structural data and elastic constants by a procedure available in the GULP code. Atomistic modeling using the effective atomic charges and the system of interatomic potentials made it possible to obtain reasonable estimates of structural parameters, atomic coordinates, and the most important physical, mechanical, and thermodynamic properties of these crystals. Temperature dependences of the heat capacity and vibrational entropy of the crystal are obtained. The calculated parameters of gadolinium–oxygen interaction potentials can be used to simulate more complex gadolinium-containing compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Borchardt and P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    C. T. Prewitt, Solid State Commun. 8, 2037 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 54, 3185 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    Q. Yuan, C. Zhao, W. Luo, X. Yin, J. Xu, and S. Pan, J. Cryst. Growth 233, 717 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    B. Joukoff and G. Grimouille, J. Cryst. Growth. 43, 719 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    E. T. Keve, S. C. Abrahams, K. Nassau, and A. M. Glass, Solid State Commun. 8, 1517 (1970).ADSCrossRefGoogle Scholar
  7. 7.
    K. Nassau, J. W. Shiever, and E. T. Keve, J. Solid State Chem. 3, 411 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    W. Jeitschko, Naturwissenschaften 27, 544 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    W. Jeitschko, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 60 (1972).CrossRefGoogle Scholar
  10. 10.
    G. Lucazeau and D. Machon, J. Raman Spectrosc. 37, 189 (2006).CrossRefGoogle Scholar
  11. 11.
    G. Lucazeau, P. Bouvier, A. Pasturel, O. Le Bacq, and T. Pagnier, Acta Phys. Pol., A 116, 25 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Morozov, M. V. Raskina, B. I. Lazoryak, K.W.Meert, K. Korthout, P. F. Smet, D. Poelman, N. Gauquelin, J. Verbeeck, A. M. Abakumov, and J. Hadermann, Chem. Mater. 26, 7124 (2014).CrossRefGoogle Scholar
  13. 13.
    J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo, Acta Crystallogr., Sect. A: Found. Crystallogr. 66, 558 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    V. Dvorak, Phys. Status Solidi B 45, 147 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    K. M. Cheung and F. G. Ullman, Phys. Rev. B: Solid State 10, 4760 (1974).ADSCrossRefGoogle Scholar
  16. 16.
    D. Jaque, Z. D. Luo, and J. G. Sole, Appl. Phys. B: Lasers Opt. 72, 811 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, and Y. Huang, Opt. Express 19, 13185 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    J. Tang, Y. Chen, Y. Lin, and Y. Huang, J. Lumin. 138, 15 (2013).CrossRefGoogle Scholar
  19. 19.
    L. L. Yang, J. F. Tang, J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Z. D. Luo, and Y. D. Huang, Opt. Mater. 35, 2188 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    S. Z. Shmurak, A. P. Kiselev, D. M. Kurmasheva, B. S. Red’kin, and V. V. Sinitsyn, J. Exp. Theor. Phys. 110 (5), 759 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V. V. Sinitsyn, B. S. Redkin, A. P. Kiselev, S. Z. Shmurak, N. N. Kolesnikov, V. V. Kveder, and E. G. Ponyatovsky, Solid State Sci. 46, 80 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    Y. X. Pan and Q. Y. Zhang, Mater. Sci. Eng., B 138, 90 (2007).CrossRefGoogle Scholar
  23. 23.
    D. P. Dutta and A. K. Tyagi, Solid State Phenom. 155, 113 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. Wang, T. Honma, Y. Doi, Y. Hinatsu, and T. Komatsu, J. Ceram. Soc. Jpn. 121, 230 (2013).CrossRefGoogle Scholar
  25. 25.
    L. Bufaiçal, G. Barros, L. Holanda, and I. Guedes, J. Magn. Magn. Mater. 378, 50 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    D. Jaque, J. Findensein, E. Montoya, J. Capmany, A. A. Kaminskii, H. J. Eichler, and J. G. Sole, J. Phys.: Condens. Matter 12, 9699 (2000).ADSGoogle Scholar
  27. 27.
    M. Li, S. Sun, L. Zhang, Y. Huang, F. Yuan, and Z. Lin, Opt. Commun. 355, 89 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    Acoustic Crystals: A Handbook, Ed. by M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].Google Scholar
  29. 29.
    D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, New York, 2005).Google Scholar
  30. 30.
    V. S. Urusov and V. B. Dudnikova, Geochem. Int. 49 (10), 1035 (2011).CrossRefGoogle Scholar
  31. 31.
    J. D. Gale, Z. Kristallogr. 220, 552 (2005).Google Scholar
  32. 32.
    B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).ADSCrossRefGoogle Scholar
  33. 33.
    K. Leinenweber and A. Navrotsky, Phys. Chem. Miner. 15, 588 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    C. I. Sainz-Diaz, A. Hernandez-Laguna, and M. T. Dove, Phys. Chem. Miner. 28, 130 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    V. L. Vinograd, D. Bosbach, B. Winkler, and J. D. Gale, Phys. Chem. Chem. Phys. 10, 3509 (2008).CrossRefGoogle Scholar
  36. 36.
    M. Busch, J. C. Toledano, and J. Torres, Opt. Commun. 10, 273 (1974).ADSCrossRefGoogle Scholar
  37. 37.
    D. J. Epstein, W. V. Herrick, and R. F. Turek, Solid State Commun. 8, 1491 (1970).ADSCrossRefGoogle Scholar
  38. 38.
    S. Mielcarek, A. Trzaskowska, B. Mroz, and T. Andrews, J. Phys.: Condens. Matter 17, 587 (2005).ADSGoogle Scholar
  39. 39.
    B. Strukov, I. Shnaidshtein, and A. Onodera, Ferroelectrics 363, 27 (2008).CrossRefGoogle Scholar
  40. 40.
    A. Fouskova, J. Phys. Soc. Jpn. 27, 1699 (1969).ADSCrossRefGoogle Scholar
  41. 41.
    R. A. Swalin, Thermodynamics of Solids (Wiley, New York, 1961).zbMATHGoogle Scholar
  42. 42.
    J. Kobayashi, Y. Sato, and T. Nakamura, Phys. Status Solidi A 14, 259 (1972).ADSCrossRefGoogle Scholar
  43. 43.
    J. Sapriel and R. Vacher, J. Appl. Phys. 48, 1191 (1977).ADSCrossRefGoogle Scholar
  44. 44.
    I. A. Andreev, Izv. Ross. Gos. Pedagog. Univ. im. A. I. Gertsena 6, 27 (2006).Google Scholar
  45. 45.
    T. Nakamura and E. Sawaguchi, J. Phys. Soc. Jpn. 50, 2323 (1981).ADSCrossRefGoogle Scholar
  46. 46.
    J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1957; Mir, Moscow, 1967).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations