Physics of the Solid State

, Volume 59, Issue 4, pp 703–709 | Cite as

Features of electrical properties of BE-C(Fe) biocarbons carbonized in the presence of an Fe-containing catalyst

  • V. V. Popov
  • T. S. Orlova
  • A. Gutierrez-Pardo
  • J. Ramirez-Rico


The effect of partial graphitization on electrical and galvanomagnetic properties of BE-C(Fe) biomorphic carbons produced by beech wood carbonization at temperatures of 850–1600°C in the presence of an iron-containing catalyst is studied. The use of an Fe catalyst at Т carb ≥ 1000°C leads to the formation of nanoscale graphite-phase inclusions; its total volume and nanocrystallite sizes increase with Т carb. The data on the carrier concentration and mobility are obtained. It was shown that partially graphitized BE-C(Fe) carbons with Т carb ≥ 1000°C in the conductivity type and magnetoresistance features relate to highly disordered metal systems whose conductivity can be described taking into account the contribution of quantum corrections, mainly the correction caused by the electron–electron interaction. It is shown that nonmonotonic dependences of the Hall constant R on the magnetic field are characteristic of BE-C(Fe) samples with 1000 ≤ Т carb < 1600°C, which is most probably caused by the contribution of various carrier groups, i.e., electrons and holes. In BE-C(Fe) samples with Т carb = 1600°C, the Hall coefficient corresponds to the metal state, which is associated with conducting medium homogenization resulting from the formation of a significant graphite phase volume.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  2. 2.
    E. Frackowiak and F. Beguin, Carbon 39, 937 (2001).CrossRefGoogle Scholar
  3. 3.
    P. Simon and Yu. Gogotsi, Nat. Mater. 7, 845 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    A. Burke, J. Power Sources 91, 37 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    S. L. Candelaria, Y. Y. Shao, W. Zhou, X. L. Li, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, J. H. Li, and G. Z. Cao, Nano Energy 1, 195 (2012).CrossRefGoogle Scholar
  6. 6.
    A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    M. V. Lebedeva, P. M. Yeletsky, A. B. Ayupov, A. N. Kuznetsov, V. A. Yakovlev, and V. N. Parmon, Mater. Renewable Sustainable Energy 4, 20 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Greil, J. Eur. Ceram. Soc. 21, 105 (2001).CrossRefGoogle Scholar
  9. 9.
    V. S. Kaul, K. T. Faber, R. Sepulveda, A. R. de Arellano Lopez, and J. Martinez-Fernandez, Mater. Sci. Eng., A 428, 225 (2006).CrossRefGoogle Scholar
  10. 10.
    C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).CrossRefGoogle Scholar
  11. 11.
    K. E. Pappacena, S. P. Gentry, T. E. Wilkes, M. T. Johnson, S. Xie, A. Davis, and K. T. Faber, J. Eur. Ceram. Soc. 29, 3069 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Gutierrez-Pardo, Thesis Doctoral (Universidad de Sevilla, Sevilla, Spain), ES41080.Google Scholar
  13. 13.
    A. Gutierrez-Pardo, J. Ramirez-Rico, R. Cabezas-Rodriguez, and J. Martinez-Fernandez, J. Power Sources 278, 18 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).CrossRefGoogle Scholar
  15. 15.
    T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 58 (1), 208 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    J. Ramirez-Rico, A. Gutierrez-Pardo, J. Martinez-Fernandez, V. V. Popov, and T. S. Orlova, Mater. Des. 99, 528 (2016).CrossRefGoogle Scholar
  17. 17.
    V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53 (2), 276 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    A. Gutierrez-Pardo, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, J. Mater. Sci. 49, 7688 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    V. V. Popov, T. S. Orlova, A. Gutierrez-Pardo, and J. Ramirez-Rico, Phys. Solid State 57 (9), 1706 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    M. T. Johnson and K. T. Faber, J. Mater. Res. 26, 18 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    V. F. Gantmakher, Electrons and Disorder in Solids (Fizmatlit, Moscow, 2003; Oxford University Press, Oxford, 2005).CrossRefzbMATHGoogle Scholar
  23. 23.
    G. M. Min’kov, A. I. Ponomarev, A. A. Sherstobitov, S. G. Novokshonov, and A. A. Ivanov, Phys. Solid State 47 (10), 1972 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Popov
    • 1
  • T. S. Orlova
    • 1
    • 2
  • A. Gutierrez-Pardo
    • 3
  • J. Ramirez-Rico
    • 3
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  3. 3.Instituto de Ciencia de Materiales de Sevilla (ICMS)Universidad de Sevilla-CSICSevillaSpain

Personalised recommendations