Physics of the Solid State

, Volume 59, Issue 3, pp 601–606 | Cite as

Silver structures at the percolation threshold, prepared by laser annealing

  • I. A. Gladskikh
  • V. A. Polishchuk
  • T. A. Vartanyan
Low-Dimensional Systems

Abstract

The electrical, optical, and structural properties of silver nanostructures at the percolation threshold, which were prepared from a conductive film by laser treatment, have been investigated experimentally. It has been found that the threshold voltage applied to the silver film leads to an abrupt change in its electrical resistance. At high voltages, there is a region with a negative differential resistance. These changes in the electrical conductivity under the influence of the applied voltage have been explained by small structural changes in the film.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kiesow, J. E. Morris, C. Radehaus, and A. Heilmann, J. Appl. Phys. 94, 6988 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    J. Y. Son, Y.-H. Shin, and C. S. Park, Appl. Phys. Lett. 92, 133510 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    D. Tondelier, K. Lmimouni, and D. Vuillaume, Appl. Phys. Lett. 85, 5763 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbé, B. Garrido, R. Rizk, and A. J. Kenyon, J. Appl. Phys. 111, 074507 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. Otto, J. Raman Spectrosc. 37, 937 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wang and L. J. Rothberg, Appl. Phys. B: Lasers Opt. 84, 289 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    S. Wagner and A. Pundt, Phys. Rev. B: Condens. Matter 78, 155131 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. Wu, Z. Wang, K. Wu, J. Zhang, C. Li, and D. Yin, Thin Solid Films 295, 315 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Gladskikh, N. B. Leonov, S. G. Przhibel’skii, and T. A. Vartanyan. Opt. Zh. 81, 67 (2014).Google Scholar
  12. 12.
    T. A. Vartanyan, I. A. Gladskikh, N. B. Leonov, and S. G. Przhibel’skii, Phys. Solid State 56 (4), 816 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    P. V. Gladskikh, I. A. Gladskikh, N. A. Toropov, M. A. Baranov, and T. A. Vartanyan, J. Nanopart. Res. 17, 424 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. Bosbach, F. Steiz, T. Vartanyan, and F. Trager, Appl. Phys. B: Lasers Opt. 73, 391 (2001).ADSGoogle Scholar
  15. 15.
    R. D. Fedorovich, A. G. Naumovets, and P. M. Tomchuk, Phys. Rep. 328, 73 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    N. B. Leonov, I. A. Gladskikh, V. A. Polishchuk, and T. A. Vartanyan, Opt. Spectrosc. 119 (3), 450 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    K. Y. Yang, K. C. Choi, I.-S. Kang, and C. W. Ahn, Opt. Express 18, 16379 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    E. Dobierzewska-Mozrzymas and P. Bieganski, J. Phys. F: Met. Phys. 18, 2061 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Gladskikh
    • 1
  • V. A. Polishchuk
    • 1
  • T. A. Vartanyan
    • 1
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations