Advertisement

Physics of the Solid State

, Volume 59, Issue 2, pp 223–228 | Cite as

Excitation of gap discrete breathers in an A3B crystal with a flux of particles

  • P. V. ZakharovEmail author
  • M. D. Starostenkov
  • A. M. Eremin
  • E. A. Korznikova
  • S. V. Dmitriev
Metals

Abstract

The generation of discrete breathers in an A3B crystal has been modeled by the method of molecular dynamics using Pt3Al as an example via the application of random unidirectional momenta, which simulate the action of a particle flux, to atoms. Two possible mechanisms of the excitation of gap discrete breathers with a soft type of nonlinearity have been revealed depending on the energy of particles in a flux. If a particle is able to transfer energy of more than 1.4 eV to the Al atom, a discrete breather can be excited by the only particle. Otherwise, a discrete breather is formed upon numerous particle–Al atom collisions, which are possible only at a sufficiently high density of particles, as each following particle must transfer its momentum to the Al atom before its oscillations provoked by previous particles attenuate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, and V. Hizhnyakov, Physica D (Amsterdam) 297, 56 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    J. F. R. Archilla, S. M. M. Coelho, F. D. Auret, V. I. Dubinko, V. Hizhnyakov, and C. Nyamhere, Springer Ser. Mater. Sci. 221, 343 (2015).CrossRefGoogle Scholar
  3. 3.
    W. Jin, J. Fan, H. Zhang, Y. Liu, H. Dong, and B. Xu, J. Alloys Compd. 646, 1 (2015).CrossRefGoogle Scholar
  4. 4.
    X. Ye, J. Kuang, X. Li, and G. Tang, J. Alloys Compd. 599, 1 (2014).CrossRefGoogle Scholar
  5. 5.
    K. Liu, X. Dong, H. Xie, Y. Wu, and F. Peng, J. Alloys Compd. 676, 106 (2016).CrossRefGoogle Scholar
  6. 6.
    V. V. Stolyarov, Mater. Sci. Eng., A 503, 18 (2009).CrossRefGoogle Scholar
  7. 7.
    A. A. Potapova and V. V. Stolyarov, Mater. Sci. Eng., A 579, 114 (2013).CrossRefGoogle Scholar
  8. 8.
    H. Wanga, G. Songa, and G. Tang, J. Alloys Compd. 681, 146 (2016).CrossRefGoogle Scholar
  9. 9.
    V. I. Dubinko, A. N. Dovbnya, V. A. Kushnir, I. V. Khodak, V. P. Lebedev, V. S. Krylovskiy, S. V. Lebedev, V. F. Klepikov, and P. N. Ostapchuk, Phys. Solid State 54 (12), 2442 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    L. Klinger, L. Levin, and O. Srolovitz, J. Appl. Phys. 79, 6834 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    R. V. Goldstein, T. M. Makhviladze, and M. E. Sarychev, J. Surf. Invest. 9, 67 (2015).CrossRefGoogle Scholar
  12. 12.
    R. V. Gol’dshtein, T. M. Makhviladze, and M. E. Sarychev, Pis’ma Mater. 6 (2), 98 (2016).Google Scholar
  13. 13.
    D. Maroudas, Surf. Sci. Rep. 66, 299 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A. J. Sievers and S. Takeno, Phys. Rev. Lett. 61 (8), 970 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    S. Flach and A. V. Gorbach, Phys. Rep. 467, 116 (2008).CrossRefGoogle Scholar
  16. 16.
    S. V. Dmitriev, E. A. Korznikova, Yu. A. Baimova, and M. G. Velarde, Phys.—Usp. 59 (5), 446 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 036608 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    M. E. Manley, A. Alatas, F. Trouw, B. M. Leu, J. W. Lynn, Y. Chen, and W. L. Hults, Phys. Rev. B: Condens. Matter 77, 214305 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    M. E. Manley, M. Yethiraj, H. Sinn, H. M. Volz, A. Alatas, J. C. Lashley, W. L. Hults, G. H. Lander, and J. L. Smith, Phys. Rev. Lett. 96, 125501 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet, and A. Alatas, Phys. Rev. B: Condens. Matter 79, 134304 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    M. Kempa, P. Ondrejkovic, P. Bourges, J. Ollivier, S. Rols, J. Kulda, S. Margueron, and J. Hlinka, J. Phys.: Condens. Matter. 25, 055403 (2013).ADSGoogle Scholar
  22. 22.
    A. J. Sievers, M. Sato, J. B. Page, and T. Rossler, Phys. Rev. B: Condens. Matter 88, 104305 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    M. Kempa, P. Ondrejkovic, P. Bourges, P. Marton, and J. Hlinka, Phys. Rev. B: Condens. Matter 89, 054308 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, and A. J. Sievers, Phys. Rev. B: Condens. Matter. 84, 144303 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, and S. V. Dmitriev, Comput. Mater. Sci. 98, 88 (2015).CrossRefGoogle Scholar
  26. 26.
    D. A. Terentyev, A. V. Dubinko, V. I. Dubinko, S. V. Dmitriev, E. E. Zhurkin, and M. V. Sorokin, Mod. Simul. Mater. Sci. Eng. 23, 085007 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    V. Hizhnyakov, A. Shelkan, M. Haas, and M. Klopov, Lett. Mater. 6 (1), 61 (2016).CrossRefGoogle Scholar
  28. 28.
    A. A. Kistanov, A. S. Semenov, R. T. Murzaev, and S. V. Dmitriev, Fundam. Probl. Sovrem. Materialoved. 11 (11), 322 (2014).Google Scholar
  29. 29.
    R. T. Murzaev, E. A. Korznikova, D. I. Bokii, S. Yu. Fomin, and S. V. Dmitriev, Fundam. Probl. Sovrem. Materialoved. 12 (3), 324 (2015).Google Scholar
  30. 30.
    R. T. Murzaev, R. I. Babicheva, K. Zhou, E. A. Korznikova, S. Yu. Fomin, V. I. Dubinko, and S. V. Dmitriev, Eur. Phys. J. B 89 (7), 168 (2016).ADSCrossRefGoogle Scholar
  31. 31.
    S. V. Dmitriev, N. N. Medvedev, R. R. Mulyukov, O. V. Pozhidaeva, A. I. Potekaev, and M. D. Starostenkov, Russ. Phys. J. 51 (8), 858 (2008).CrossRefGoogle Scholar
  32. 32.
    P. V. Zakharov, S. V. Dmitriev, and M. D. Starostenkov, Key Eng. Mater. 685, 65 (2016).CrossRefGoogle Scholar
  33. 33.
    N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and S. V. Dmitriev, Tech. Phys. Lett. 41 (10), 994 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    P. V. Zakharov, M. D. Starostenkov, S. V. Dmitriev, N. N. Medvedev, and A. M. Eremin, J. Exp. Theor. Phys. 121 (2), 217 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    S. V. Dmitriev, A. P. Chetverikov, and M. G. Velarde, Phys. Status Solidi B 252 (7), 1682 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    N. N. Medvedev, M. D. Starostenkov, A. I. Potekaev, P. V. Zakharov, A. V. Markidonov, and A. M. Eremin, Russ. Phys. J. 57 (3), 387 (2014).CrossRefGoogle Scholar
  37. 37.
    P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, and A. V. Markidonov, Fundam. Probl. Sovrem. Materialoved. 11 (2), 260 (2014).Google Scholar
  38. 38.
    N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and A. V. Markidonov, Pis’ma Mater. 3 (1), 34 (2013).Google Scholar
  39. 39.
    N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and O. V. Pozidaeva, Tech. Phys. Lett. 37 (2), 98 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    N. N. Medvedev, M. D. Starostenkov, and M. E. Manley, J. Appl. Phys. 114, 213506 (2013).Google Scholar
  41. 41.
    I. P. Lobzenko, G. M. Chechin, G. S. Bezuglova, Yu. A. Baimova, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 58 (3), 633 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    G. M. Chechin and I. P. Lobzenko, Pis’ma Mater. 4 (4), 226 (2014).Google Scholar
  43. 43.
    G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B: Condens. Matter 90, 045432 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    V. I. Dubinko and D. V. Laptev, Pis’ma Mater. 6 (1), 16 (2016).Google Scholar
  45. 45.
    V. I. Dubinko and D. V. Laptev, Lett. Mater. 6 (1), 16 (2016).CrossRefGoogle Scholar
  46. 46.
    V. I. Dubinko, J. Condens. Matter Nucl. Sci. 14, 87 (2014).Google Scholar
  47. 47.
    V. Dubinko, J. Micromech. Mol. Phys. 1, 1650006 (2016).CrossRefGoogle Scholar
  48. 48.
    V. I. Dubinko, A. V. Dubinko, and S. V. Dmitriev, Pis’ma Mater. 3 (3), 239 (2013).Google Scholar
  49. 49.
    A. A. Kistanov, S. V. Dmitriev, A. S. Semenov, V. I. Dubinko, and D. A. Terent’ev, Tech. Phys. Lett. 40 (8), 657 (2014).ADSCrossRefGoogle Scholar
  50. 50.
    L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B: Condens. Matter 81, 214306 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    A. A. Kistanov and S. V. Dmitriev, Phys. Solid State 54 (8), 1648 (2012).ADSCrossRefGoogle Scholar
  52. 52.
    A. A. Kistanov and S. V. Dmitriev, Tech. Phys. Lett. 39 (7), 618 (2013).ADSCrossRefGoogle Scholar
  53. 53.
    S. V. Dmitriev and Yu. A. Baimova, Tech. Phys. Lett. 37 (5), 451 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, and K. Zhou, J. Phys. D: Appl. Phys. 46, 305302 (2013).CrossRefGoogle Scholar
  55. 55.
    E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102 (6), 60004 (2013).ADSCrossRefGoogle Scholar
  56. 56.
    S. V. Dmitriev, J. Micromech. Mol. Phys. 1 (2), 1630001 (2016).CrossRefGoogle Scholar
  57. 57.
    E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96 (4), 222 (2012).ADSCrossRefGoogle Scholar
  58. 58.
    A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, Yu. I. Tyurin, K. P. Aref’ev, N. O. Solonitsina, and V. D. Klopotov, Crystal-Geometric and Crystal-Chemical Laws of the Formation of Binary and Trinary Compounds Based on Titanium and Nickel (Tomsk Polytechnic University, Tomsk, 2011) [in Russian].Google Scholar
  59. 59.
    S. V. Meschel, P. Nash, and X. Q. Chen, J. Alloys Compd. 492, 105 (2010).CrossRefGoogle Scholar
  60. 60.
    H. Y. Wang and J. Cao, Condens. Matter Phys. 15, 13705 (2012).CrossRefGoogle Scholar
  61. 61.
    N. Wei, Ch. Zhang, and S. Hou, Condens. Matter Phys. 18, 43601 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. V. Zakharov
    • 1
    • 2
    Email author
  • M. D. Starostenkov
    • 2
  • A. M. Eremin
    • 1
  • E. A. Korznikova
    • 3
  • S. V. Dmitriev
    • 3
    • 4
  1. 1.Shukshin Altai State Humanities Pedagogical UniversityBiysk, Altai kraiRussia
  2. 2.Polzunov Altai State Technical UniversityBarnaul, Altai kraiRussia
  3. 3.Institute for Metal Superplasticity ProblemsRussian Academy of SciencesUfa, BashkortostanRussia
  4. 4.Leading National Research Tomsk State UniversityTomskRussia

Personalised recommendations