Physics of the Solid State

, Volume 59, Issue 2, pp 368–377 | Cite as

Electronic structure of nickel porphyrin NiP: Study by X-ray photoelectron and absorption spectroscopy

  • G. I. Svirskiy
  • N. N. Sergeeva
  • S. A. Krasnikov
  • N. A. Vinogradov
  • Yu. N. Sergeeva
  • A. A. Cafolla
  • A. B. Preobrajenski
  • A. S. Vinogradov
Low-Dimensional Systems


Energy distributions and properties of the occupied and empty electronic states for a planar complex of nickel porphyrin NiP are studied by X-ray photoemission and absorption spectroscopy techniques. As a result of the analysis of the experimental spectra of valence photoemission, the nature and energy positions of the highest occupied electronic states were determined: the highest occupied state is formed mostly by atomic states of the porphine ligand; the following two states are associated with 3d states of the nickel atom. It was found that the lowest empty state is specific and is described by the σ-type b1g MO formed by empty \(Ni3{d_{{x^2} - {y^2}}}\)-states and occupied 2p-states of lone electron pairs of nitrogen atoms. This specific nature of the lowest empty state is a consequence of the donor–acceptor chemical bond in NiP.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Porphyrin Handbook, Ed. by K. M. Kadish, K.MSmith, and R. Guilard (Academic, San Diego, California, United States, 2000), Vols. 1–10.Google Scholar
  2. 2.
    H. L. Anderson, Chem. Commun. (Cambridge), No. 12, 2323 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuiercheartaigh, Adv. Mater. (Weinheim) 19, 2737 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Bhyrappa, J. K. Young, J. S. Moore, and K. S. Suslick, J. Am. Chem. Soc. 118, 5708 (1996).CrossRefGoogle Scholar
  5. 5.
    Manivannan Ethirajan, Yihui Chen, Penny Joshi, and Ravindra K. Pandey, Chem. Soc. Rev. 40, 340 (2011).CrossRefGoogle Scholar
  6. 6.
    D. Filippini, A. Alimelli, C. Di Natale, R. Paolesse, A. D’Amico, and I. Lundström, Angew. Chem., Int. Ed. 45, 3800 (2006).Google Scholar
  7. 7.
    M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961).ADSCrossRefGoogle Scholar
  8. 8.
    A. Antipas and M. Gouterman, J. Am. Chem. Soc. 105, 4869 (1983).CrossRefGoogle Scholar
  9. 9.
    A. Rosa, G. Ricciardi, E. J. Baerends, and S. J. A. van Gisbergen, J. Phys. Chem. A 105, 3311 (2001).CrossRefGoogle Scholar
  10. 10.
    M. S. Liao and S. Scheiner, Chem. Phys. 117, 205 (2002).ADSGoogle Scholar
  11. 11.
    J. S. Evans and R. L. Musselman, Inorg. Chem. 43, 5613 (2004).CrossRefGoogle Scholar
  12. 12.
    D. Kim, C. Kirmaier, and D. Holten, Chem. Phys. 75, 305 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    J. Stöhr, NEXAFS Spectroscopy (Springer Verlag, Berlin, 1992).CrossRefGoogle Scholar
  14. 14.
    S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 2nd ed. (Springer-Verlag, Berlin, 1995).CrossRefGoogle Scholar
  15. 15.
    C. Berrios, G. I. Cárdenas-Jirón, J. F. Marco, C. Gutiérrez, and M. S. Ureta-Zañartu, J. Phys. Chem. A 111, 2706 (2007).CrossRefGoogle Scholar
  16. 16.
    C. Berrios, J. F. Marco, C. C. Gutiérrez, and M. S. Ureta-Zañartu, J. Phys. Chem. B 112, 12644 (2008).CrossRefGoogle Scholar
  17. 17.
    K. M. Barkigia, M. W. Renner, L. R. Furenlid, C. J. Medforth, K. M. Smith, and J. Fajer, J. Am. Chem. Soc. 115, 3627 (1993).CrossRefGoogle Scholar
  18. 18.
    L. Campbell, S. Tanaka, and S. Mukamel, Chem. Phys. 299, 225 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Krasnikov, A. B. Preobrajenski, N. N. Sergeeva, M. M. Brzhezinskaya, M. A. Nesterov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, Chem. Phys. 332, 318 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    S. A. Krasnikov, N. N. Sergeeva, M. M. Brzhezinskaya, A. B. Preobrajenski, Y. N. Sergeeva, N. A. Vinogradov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, J. Phys.: Condens. Matter 20, 235207 (2008).ADSGoogle Scholar
  21. 21.
    S. I. Fedoseenko, I. E. Iossifov, S. A. Gorovikov, J.-S. Schmid, R. Follath, S. L. Molodtsov, V. K. Adamchuk, and G. Kaindl, Nucl. Instrum. Methods Phys. Res., Sect. A 470, 84 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    R. Nyholm, S. Svensson, J. Nordgren, and A. Flodström, Nucl. Instrum. Methods Phys. Res., Sect. A 246, 267 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    E. Unger, U. Bobinger, W. Dreybrodt, and R. Schweitzer-Stenner, J. Phys. Chem. 97, 9956 (1993).CrossRefGoogle Scholar
  24. 24.
    A. S. Vinogradov, S. I. Fedoseenko, S. A. Krasnikov, A. B. Preobrajenski, V. N. Sivkov, D. V. Vyalikh, S. L. Molodtsov, V. K. Adamchuk, C. Laubschat, and G. Kaindl, Phys. Rev. B: Condens. Matter 71, 045127 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    D. L. Adams, FitXPS: A Fitting Program for Core Level Spectra (Version 2.12). html.Google Scholar
  26. 26.
    F. Cotton and G. Wilkinson, Basic Inorganic Chemistry (Wiley, New York, 1976; Mir, Moscow, 1979).Google Scholar
  27. 27.
    S. R. Forrest, Chem. Rev. 97, 1793 (1997).CrossRefGoogle Scholar
  28. 28.
    J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    R. I. Karaziya, Sov. Phys.—Usp. 24 (9), 775 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    I. B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory, 3rd ed. (Khimiya, Leningrad, 1986; Wiley New York, 1996).Google Scholar
  31. 31.
    A. Rosa, G. Ricciardi, E. J. Baerends, M. Zimin, M. A. J. Rodgers, S. Matsumoto, and N. Ono, Inorg. Chem. 44, 6609 (2005).CrossRefGoogle Scholar
  32. 32.
    J. C. Fuggle and N. Mårtensson, J. Electron Spectrosc. Relat. Phenom. 21, 275 (1980).CrossRefGoogle Scholar
  33. 33.
    M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, Appl. Surf. Sci. 257, 2717 (2011).ADSCrossRefGoogle Scholar
  34. 34.
    M. P. Keane, A. Naves de Brito, N. Correia, and S. Svensson, Chem. Phys. 155, 379 (1991).ADSCrossRefGoogle Scholar
  35. 35.
    H. Ebert, J. Stöhr, S. S. P. Parkin, M. Samant, and A. Nilsson, Phys. Rev. B: Condens. Matter 53, 16067 (1996).ADSCrossRefGoogle Scholar
  36. 36.
    J. G. Chen, Surf. Sci. Rep. 30, 1 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. I. Svirskiy
    • 1
  • N. N. Sergeeva
    • 2
  • S. A. Krasnikov
    • 1
    • 3
  • N. A. Vinogradov
    • 1
    • 4
  • Yu. N. Sergeeva
    • 5
  • A. A. Cafolla
    • 3
  • A. B. Preobrajenski
    • 1
    • 4
  • A. S. Vinogradov
    • 1
  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.School of ChemistryUniversity of LeedsLeedsUK
  3. 3.School of Physical SciencesDublin City UniversityGlasnevin, Dublin 9Ireland
  4. 4.MAX IV LaboratoryUniversity of LundLundSweden
  5. 5.Commissariat à l’Énergie Atomique et aux Énergies AlternativesInstitut Nanosciences et CryogénieGrenoble Cedex 9France

Personalised recommendations