Advertisement

Physics of the Solid State

, Volume 58, Issue 11, pp 2165–2176 | Cite as

Experimental investigation of the role of the triplet pairing in the superconducting spin-valve effect

  • P. V. Leksin
  • A. A. Kamashev
  • N. N. Garif’yanov
  • A. A. Validov
  • Ya. V. Fominov
  • J. Schumann
  • V. E. Kataev
  • B. Büchner
  • I. A. Garifullin
Superconductivity
  • 64 Downloads

Abstract

An important role of the morphology of a superconducting layer in the superconducting spin-valve effect has been established. The triplet pairing induced by the superconductor/ferromagnet proximity effect has been experimentally investigated for samples CoO x /Py1/Cu/Py2/Cu/Pb (where Py = Ni0.81Fe0.19) with a smooth superconducting layer. The optimization of the parameters of this structure has demonstrated a complete switching between the normal and superconducting states with a change in the relative orientation of magnetizations of the ferromagnetic layers from the antiparallel to orthogonal orientation. A pure triplet contribution has been observed for the sample with a permalloy layer thickness at which the superconducting spin-valve effect vanishes. A direct comparison of the experimental data with the theoretical calculation of the temperature of the transition to the superconducting state has been performed for the first time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Oh, D. Youm, and M. R. Beasley, Appl. Phys. Lett. 71, 2376 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M. Eschrig, Phys. Today 64, 43 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014).ADSGoogle Scholar
  4. 4.
    J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).CrossRefGoogle Scholar
  5. 5.
    V. I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.-A. Krug von Nidda, C. Müller, M. Yu. Kupriyanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, Phys. Rev. B: Condens. Matter 87, 144507 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Jara, C. Safranski, I. N. Krivorotov, C.-T. Wu, A. N. Malmi-Kakkada, O. T. Valls, and K. Halterman, Phys. Rev. B: Condens. Matter 89, 184502 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    X. L. Wang, A. Di Bernardo, N. Banerjee, A. Wells, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Phys. Rev. B: Condens. Matter 89, 140508(R) (2014).ADSCrossRefGoogle Scholar
  8. 8.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, H. Vinzelberg, V. Kataev, R. Klingeler, O. G. Schmidt, and B. Büchner, Appl. Phys. Lett. 97, 102505 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    Bin Li, N. Roschewsky, B. A. Assaf, Marius Eich, M. Epstein-Martin, D. Heiman, M. Münzenberg, and J. S. Moodera, Phys. Rev. Lett. 110 (9), 097001 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    A. Singh, S. Voltan, K. Lahabi, J. Aarts. Phys. Rev. X 5, 021 019 (2015).Google Scholar
  11. 11.
    Y. Gu, J. W. A. Robinson, M. Bianchetti, N. A. Stelmashenko, D. Astill, F. M. Grosche, J. L. MacManus-Discoll, and M. G. Blamire, APL Mater. 2, 046103 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Gu, G. B. Halász, J. W. A. Robinson, and M. G. Blamire, Phys. Rev. Lett. 115, 067201 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. Mironov and A. Buzdin, Phys. Rev. B: Condens. Matter 92, 184506 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, in Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport, Ed. by H. Zabel and S. D. Bader (Springer-Verlag, Berlin, 2007), pp. 251–289.Google Scholar
  17. 17.
    K. B. Efetov, I. A. Garifullin, A. F. Volkov, and K. Westerholt, in Magnetic Nanostructures: Spin Dynamic and Spin Transport, Ed. by H. Zabel and M. Farle (Springer-Verlag, Berlin, 2013), pp. 85–118.Google Scholar
  18. 18.
    Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91 (6), 308 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, Y. Krupskaya, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 109, 057005 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. G. Flokstra, T. C. Cunningham, J. Kim, N. Satchell, G. Burnell, P. J. Curran, S. J. Bending, C. J. Kinane, J. F. K. Cooper, S. Langridge, A. Isidori, N. Pugach, M. Eschrig, and S. L. Lee, Phys. Rev. B: Condens. Matter 91, 060501 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    N. Banerjee, C. B. Smiet, R. G. J. Smits, A. Ozaeta, F. S. Bergeret, M. G. Blamire, and J. W. A. Robinson, Nat. Commun. 5, 3048 (2014).ADSGoogle Scholar
  22. 22.
    P. V. Leksin, A. A. Kamashev, N. N. Garif’yanov, I. A. Garifullin, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, and B. Büchner, JETP Lett. 97 (8), 478 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    P. V. Leksin, N. N. Garif’yanov, A. A. Kamashev, Ya. V. Fominov, J. Schumann, C. Hess, V. Kataev, B. Büchner, and I. A. Garifullin, Phys. Rev. B: Condens. Matter 91, 214508 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    P. V. Leksin, A. A. Kamashev, J. Schumann, V. Kataev. J. Thomas, B. Büchner, and I. A. Garifullin, Nano Res. (2016) (accepted). arXiv:1510.04846.Google Scholar
  25. 25.
    Y. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, Phys. Rev. B: Condens. Matter 66, 014507 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. Lett. 106, 067005 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    P. V. Leksin, N. N. Garif’yanov, I. A. Garifullin, J. Schumann, V. Kataev, O. G. Schmidt, and B. Büchner, Phys. Rev. B: Condens. Matter 85, 024502 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    R. G. Deminov, L. R. Tagirov, R. R. Gaifullin, T. Yu. Karminskaya, M. Yu. Kupriyanov, Ya. V. Fominov, and A. A. Golubov, J. Magn. Magn. Mater. 373, 16 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    G. Deminov, L. R. Tagirov, R. R. Gaifullin, Ya. V. Fominov, T. Yu. Karminskaya, M. Yu. Kupriyanov, and A. A. Golubov, Solid State Phenom. 233–234, 745 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. V. Leksin
    • 1
    • 4
  • A. A. Kamashev
    • 1
  • N. N. Garif’yanov
    • 1
  • A. A. Validov
    • 1
  • Ya. V. Fominov
    • 2
    • 3
  • J. Schumann
    • 4
  • V. E. Kataev
    • 4
  • B. Büchner
    • 4
    • 5
  • I. A. Garifullin
    • 1
  1. 1.Kazan Zavoisky Physical-Technical Institute (KPhTI) of the Kazan Scientific Center of the Russian Academy of SciencesKazan, TatarstanRussia
  2. 2.Landau Institute for Theoretical Physics of Russian Academy of SciencesChernogolovka, Moscow regionRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia
  4. 4.Leibniz Institute for Solid State and Materials Research (IFW Dresden)DresdenGermany
  5. 5.Institut für FestkörperphysikTechnische Universität DresdenDresdenGermany

Personalised recommendations