Physics of the Solid State

, Volume 58, Issue 11, pp 2325–2330 | Cite as

Influence of high-temperature annealing on the orientation of the unipolarity vector in lead zirconate titanate thin films

  • A. G. Kanareikin
  • E. Yu. Kaptelov
  • S. V. Senkevich
  • I. P. Pronin
  • A. Yu. Sergienko
  • O. N. Sergeeva


The factors responsible for the change in the orientation of the natural unipolarity vector due to heating to the Curie temperature of a Pt/PZT/Pt thin-film capacitor (PZT—lead zirconate titanate) formed on a TiO2/SiO2/Si substrate have been considered. Lead zirconate titanate thin layers containing a small excess of lead oxide have been formed ex situ using high-frequency magnetron sputtering with a variation in the annealing temperature (crystallization of the perovskite phase) in the range from 580 to 650°C. It has been assumed that the reorientation of the unipolarity vector in the PZT layer is caused by the change in the mechanism of crystallization of the perovskite phase with an increase in the annealing temperature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ijima, R. Takayama, Y. Tomita, and I. Ueda, J. Appl. Phys. 60, 2914 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    E. Sviridov, I. Sem, V. Alyoshin, S. Biryukov, and V. Dudkevich, Mater. Res. Soc. Symp. Proc. 361, 141 (1995).CrossRefGoogle Scholar
  3. 3.
    G. A. C. M. Spierings, G. J. M. Dormans, W. G. J. Moors, M. J. E. Ulenaers, and P. K. Larsen, J. Appl. Phys. 78, 1926 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    K. Abe, S. Komatsu, N. Yanase, K. Sano, and T. Kamakubo, Jpn. J. Appl. Phys., Part 136 (9B), 5846 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    E. G. Lee, J. S. Park, J. K. Lee, and J. G. Lee, Thin Solid Films 310, 327 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    A. L. Kholkin, K. G. Brooks, D. V. Taylor, S. Hiboux, and N. Setter, Integr. Ferroelectr. 22, 525 (1998).CrossRefGoogle Scholar
  7. 7.
    M. Kobune, H. Ishito, A. Mineshige, S. Fujii, R. Takayama, and A. Tomozawa, Jpn. J. Appl. Phys., Part 1 37 (9B), 5154 (1998).CrossRefGoogle Scholar
  8. 8.
    R. Bruchhaus, D. Pitzer, M. Schreiter, and W. Wersing, J. Electroceram. 3, 151 (1999).CrossRefGoogle Scholar
  9. 9.
    S. Okamura, S. Miyata, Y. Mizutani, T. Nishida, and T. Shiosaki, Jpn. J. Appl. Phys., Part 1 38 (9B), 5364 (1999).CrossRefGoogle Scholar
  10. 10.
    H. Fujusawa, S. Nakashima, K. Kaibara, M. Shimizu, and H. Niu, Jpn. J. Appl. Phys., Part 1 38 (9B), 5392 (1999).CrossRefGoogle Scholar
  11. 11.
    S. Hiboux and P. Muralt, Integr. Ferroelectr. 36, 83 (2001).CrossRefGoogle Scholar
  12. 12.
    I. P. Pronin, E. Yu. Kaptelov, E. A. Tarakanov, and V. P. Afanas’ev, Phys. Solid State 44 (9), 1736 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    G. Suchaneck, T. Sandner, A. Deineka, G. Gerlach, and L. Jastrabik, Ferroelectrics 289, 309 (2004).CrossRefGoogle Scholar
  14. 14.
    V. V. Shvartsman, A. V. Pankrashkin, V. P. Afanasjev, E. Yu. Kaptelov, I. P. Pronin, and A. L. Kholkin, Integr. Ferroelectr. 69, 103 (2005).CrossRefGoogle Scholar
  15. 15.
    A. A. Bogomolov, O. N. Sergeeva, D. A. Kiselev, E. Yu. Kaptelov, and I. P. Pronin, Tech. Phys. Lett. 31 (6), 468 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Z. J. Wang, H. Kokawa, H. Takizawa, M. Ichiki, and R. Maeda, Appl. Phys. Lett. 86, 212903 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Afanas’ev, I. P. Pronin, and A. L. Kholkin, Phys. Solid State 48 (6), 1214 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    B. E. Watts, Proc. Appl. Ceram. 3 (1–2), 97 (2009).CrossRefGoogle Scholar
  19. 19.
    E. C. Lima, E. B. Araújo, I. K. Bdikin, and A. L. Kholkin, Mater. Res. Bull. 47, 3548 (2012).CrossRefGoogle Scholar
  20. 20.
    X.-Y. Li, L. Chang, W.-X. Gao, G.-L. Yuan, J. Yin, and Z.-G. Liu, AIP Adv. 3, 122101 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    V. P. Pronin, S. V. Senkevich, E. Yu. Kaptelov, and I. P. Pronin, Phys. Solid State 55 (1), 105 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    J.-P. Chen, Y. Luo, Y. Ou, G.-L. Yuan, Y.-P. Wang, Y. Yang, J. Yin, and G.-G. Liu, J. Appl. Phys. 113, 204105 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    E. C. Lima, E. B. Araújo, I. K. Bdikin, and A. L. Kholkin, Ferroelectrics 465, 106 (2014).CrossRefGoogle Scholar
  24. 24.
    B. M. Darinskii, A. S. Sidorkin, L. P. Nesterenko, and A. A. Sidorkin, Phys. Solid State 57 (3), 549 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Osipov, D. A. Kiselev, E. Yu. Kaptelov, S. V. Senkevich, and I. P. Pronin, Phys. Solid State 57 (9), 1793 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    F. T. Rogers, J. Appl. Phys. 27, 1066 (1956).ADSCrossRefGoogle Scholar
  27. 27.
    V. G. Gavrilyachenko, V. P. Dudkevich, and E. G. Fesenko, Sov. Phys. Crystallogr. 13 (2), 277 (1968).Google Scholar
  28. 28.
    W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, and Y.-S. Kang, Crit. Rev. Solid State Mater. Sci. 32, 111 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    E. V. Bursian, O. I. Zaikovskii, and K. V. Makarov, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 1098 (1969).Google Scholar
  31. 31.
    A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross, and M. Tsukada, Appl. Phys. Lett. 83, 728 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    Fundamentals of Silicon Integrated Device Technology, Vol. 1: Oxidation, Diffusion, and Epitaxy, Ed. by R. M. Burger and R. P. Donovan (Prentice-Hall, Upper Saddle River, New Jersey, 1967; Mir, Moscow, 1969).Google Scholar
  33. 33.
    H. Watanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 25 (1), 221 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    I. P. Pronin, E. Yu. Kaptelov, N. G. Khosina, and V. P. Afanas’ev, Tech. Phys. Lett. 30 (3), 228 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Kanareikin
    • 1
  • E. Yu. Kaptelov
    • 1
  • S. V. Senkevich
    • 1
  • I. P. Pronin
    • 1
  • A. Yu. Sergienko
    • 2
  • O. N. Sergeeva
    • 3
    • 4
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Education Management of the Russian Academy of EducationSt. PetersburgRussia
  3. 3.Tver State UniversityTverRussia
  4. 4.Moscow Technological University (MIREA)MoscowRussia

Personalised recommendations