Physics of the Solid State

, Volume 58, Issue 11, pp 2307–2311 | Cite as

Luminescent properties of diamond single crystals of pyramidal shape

  • A. M. Alekseev
  • F. T. Tuyakova
  • E. A. Obraztsova
  • E. V. Korostylev
  • D. V. Klinov
  • K. A. Prusakov
  • S. A. Malykhin
  • R. R. Ismagilov
  • A. N. Obraztsov
Dielectrics

Abstract

The luminescence properties of needle-like crystals of diamond, obtained by selective oxidation of textured polycrystalline diamond films, are studied. Diamond films were grown by chemical vapor deposition from a methane–hydrogen mixture activated by a DC discharge. The spectra of photo- and cathodoluminescence and the spatial distribution of the intensity of radiation at different wavelengths are obtained for individual needle-like crystals. Based on the spectral characteristics, conclusions are made about the presence of optically active defects containing nitrogen and silicon impurities in their structure, as well as the significant effect of structural defects on their luminescence spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Berlin, 2013).Google Scholar
  2. 2.
    I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, Rep. Prog. Phys. 74, 076501 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    L. Childress and R. Hanson, MRS Bull. 38, 134 (2013).Google Scholar
  4. 4.
    A. M. Stoneham, A. H. Harker, and G. W. Morley, J. Phys.: Condens. Matter 21, 364222 (2009).Google Scholar
  5. 5.
    J. P. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nature (London) 455, 644 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    F. Dolde, H. Fedder, M. W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Nat. Phys. 7, 459 (2011).CrossRefGoogle Scholar
  7. 7.
    C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, Proc. Natl. Acad. Sci. USA 104, 727 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    Th. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maz, Ph. R. Hemmer, and M. Lonar, Nat. Nanotechnol. 5, 195 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, and M. B. Plenio, New J. Phys. 16, 093002 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    M. L. Markham, J. M. Dodson, G. A. Scarsbrook, D. J. Twitchen, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, Diamond Relat. Mater. 20, 134 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Obraztsov, P. G. Kopylov, A. L. Chuvilin, and N. V. Savenko, Diamond Relat. Mater. 18, 1289 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Zolotukhin, M. A. Dolganov, A. M. Alekseev, and A. N. Obraztsov, Diamond Relat. Mater. 42, 15 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. N. Obraztsov, P. G. Kopylov, B. A. Loginov, M. A. Dolganov, R. R. Ismagilov, and N. V. Savenko, Rev. Sci. Instrum. 81, 013703 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    F. T. Tuyakova, E. A. Obraztsova, and R. R. Ismagilov, J. Nanophotonics 10, 12517 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Alexeev, R. R. Ismagilov, E. E. Ashkinazi, A. S. Orekhov, S. A. Malykhin, and A. N. Obraztsov, Diamond Relat. Mater. 65, 13 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    R. R. Ismagilov, I. R. Khamidullin, V. I. Kleshch, S. A.Malykhin, A. M. Alexeev, and A. N. Obraztsov, J. Nanophotonics 10, 12503 (2016).Google Scholar
  17. 17.
    R. R. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, Chem. Vap. Deposition 19, 332 (2013).CrossRefGoogle Scholar
  18. 18.
    R. R. Ismagilov, A. A. Zolotukhin, P. V. Shvets, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 90 (2012).CrossRefGoogle Scholar
  19. 19.
    E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and Ch. Becher, New J. Phys. 13, 025012 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    J. O. Orwa, A. D. Greentree, I. Aharonovich, A. D. C. Alves, J. Van Donkelaar, A. Stacey, and S. Prawer, J. Lumin. 130, 1646 (2010).CrossRefGoogle Scholar
  21. 21.
    Y. Muranaka, H. Yamashita, and H. Miyadera, Thin Solid Films 199, 299 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    M. C. Rossi, S. Salvatori, F. Galluzzi, F. Somma, and R. M. Montereali, Diamond Relat. Mater. 7, 255 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    R. P. Joshi, K. H. Schoenbach, C. Molina, and W. W. Hofer, J. Appl. Phys. 74, 1568 (1993).ADSCrossRefGoogle Scholar
  24. 24.
    J. E. Yater, A. Shih, J. E. Butler, and P. E. Pehrsson, Appl. Surf. Sci. 191, 52 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Stevens-Kalceff, S. Prawer, W. Kalceff, J. O. Orwa, J. L. Peng, J. C. McCallum, and D. N. Jamieson, J. Appl. Phys. 104, 3514 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Alekseev
    • 1
  • F. T. Tuyakova
    • 2
    • 3
  • E. A. Obraztsova
    • 3
    • 4
  • E. V. Korostylev
    • 5
  • D. V. Klinov
    • 4
    • 6
  • K. A. Prusakov
    • 6
  • S. A. Malykhin
    • 1
  • R. R. Ismagilov
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Technological UniversityMoscowRussia
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblast, 141701Russia
  6. 6.Federal Research and Clinical Center of Physicochemical MedicineMoscowRussia

Personalised recommendations