Advertisement

Physics of the Solid State

, Volume 58, Issue 10, pp 2055–2061 | Cite as

Effect of point defects on luminescence characteristics of ZnO ceramics

  • P. A. Rodnyi
  • K. A. ChernenkoEmail author
  • A. Zolotarjovs
  • L. Grigorjeva
  • E. I. Gorokhova
  • I. D. Venevtsev
Impurity Centers

Abstract

Photo- and thermally stimulated luminescence of ZnO ceramics are produced by uniaxial hot pressing. The luminescence spectra of ceramics contain a wide band with a maximum at 500 nm, for which oxygen vacancies VO are responsible, and a narrow band with a maximum at 385 nm, which is of exciton nature. It follows from luminescence excitation spectra that the exciton energy is transferred to luminescence centers in ZnO. An analysis of the thermally stimulated luminescence curves allowed detection of a set of discrete levels of point defects with activation energies of 25, 45, 510, 590 meV, and defects with continuous energy distributions in the range of 50–100 meV. The parameters of some of the detected defects are characteristic of a lithium impurity and hydrogen centers. The photoluminescence kinetics are studied in a wide temperature range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoçd, J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).ADSCrossRefGoogle Scholar
  3. 3.
    H. Chen, S. Gu, K. Tang, S. Zhu, Zh. Zhu, J. Ye, R. Zhang, and Y. Zheng, J. Lumin. 131, 1189 (2011).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, B. Yang, N. Can, and P. D. Townsend, J. Appl. Phys. 109, 053508 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    C. Ton-That, L.Weston, and M. R. Phillips, Phys. Rev. B: Condens. Matter 86, 115205 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    T. Moe Berseth, B. G. Svenson, A. Yu. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 89, 262112 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    D. M. Hoffmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, and P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    F. Leiter, H. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, and B. K. Meyer, Physica B (Amsterdam) 201, 340 (2003).Google Scholar
  9. 9.
    C. Ton-That, L. L. C. Lem, M. R. Phillips, F. Reisdorffer, J. Mevellec, T.-P. Nguyen, C. Nenstiel, and A. Hoffmann, New J. Phys. 16, 083040 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011).CrossRefGoogle Scholar
  11. 11.
    Ji Jianfeng, L. A. Boatner, and F. A. Selim, Appl. Phys. Lett. 105, 041102 (2014).ADSCrossRefGoogle Scholar
  12. 13.
    D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).ADSCrossRefGoogle Scholar
  13. 14.
    K. Kodama and T. Uchino, J. Appl. Phys. 111, 093525 (2012).ADSCrossRefGoogle Scholar
  14. 15.
    C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 1424 (2010).ADSCrossRefGoogle Scholar
  15. 16.
    K. Tapan and J. Gupta, Am. Ceram. Soc. 73 1817 (1990).CrossRefGoogle Scholar
  16. 17.
    V. I. Kushnirenko, I. V. Markevich, and A. V. Rusavsky, Radiat. Meas. 45, 468 (2010).CrossRefGoogle Scholar
  17. 18.
    R. C. Hoffmann and J. J. Schneider, J. Am. Ceram. Soc. 94, 1878 (2011).CrossRefGoogle Scholar
  18. 19.
    M. Hong, D. Fredrick, D. M. Devito, J. Y. Howe, Xia Yang, N. C. Giles, J. S. Neal, and Zu. A. Munir, Int. J. Appl. Ceram. Technol. 8, 725 (2011).CrossRefGoogle Scholar
  19. 20.
    I. V. Markevich and V. I. Kushnirenko, Solid State Commun. 149, 866 (2009).ADSCrossRefGoogle Scholar
  20. 21.
    Wen Xiao-ming, N. Ohno, and Zh. Zhong-ming, Chin. Phys. 10, 874 (2001).ADSCrossRefGoogle Scholar
  21. 22.
    L. Grigorjeva, D. Millers, J. Grabis, J. Fidelus, W. Lojkowski, T. Chudoba, and K. Bienkowski, Radiat. Meas. 45, 441 (2010).CrossRefGoogle Scholar
  22. 23.
    E. I. Gorokhova, P. A. Rodnyi, K. A. Chernenko, G. V. Anan’eva, S. B. Eron’ko, E. A. Oreshchenko, I. V. Khodyuk, E. P. Lokshin, G. B. Kunshina, O. G. Gromov, and K. P. Lott, Opt. Zh. 78, 85 (2011).Google Scholar
  23. 24.
    R. Chen and V. Pagonis, Thermally and Optically Stimulated Luminescence: A Simulation Approach (Wiley, New York, 2011).CrossRefGoogle Scholar
  24. 25.
    I. Kudryavtseva, A. Lushchik, A. I. Nepomnyashchikh, F. Savikhin, E. Vasil’chenko, and Yu. Lisovskaya, Phys. Solid State 50 (9), 1667 (2008).ADSCrossRefGoogle Scholar
  25. 26.
    K. Kodama and T. Uchino, J. Phys. Chem. C 118, 23977 (2014).CrossRefGoogle Scholar
  26. 27.
    J. V. Foreman, J. G. Simmons, W. E. Baughman, J. Liu, and H. O. Everitt, J. Appl. Phys. 113, 133513 (2013).ADSCrossRefGoogle Scholar
  27. 28.
    D. Zwingel, J. Lumin. 5, 385 (1972).CrossRefGoogle Scholar
  28. 29.
    G. Baur, E. V. Freydorf, and W. H. Koschel, Phys. Status Solidi A 21, 247 (1974).ADSCrossRefGoogle Scholar
  29. 30.
    Y. P. Tu, Q. Wang, J. He, X. Li, and L. J. Ding, Sci. China Tech. Sci. 56, 677 (2013).CrossRefGoogle Scholar
  30. 31.
    A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett. 88, 103107 (2006).ADSCrossRefGoogle Scholar
  31. 32.
    M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3, 2643 (2010).ADSCrossRefGoogle Scholar
  32. 33.
    A. Vedda, M. Nikl, M. Fasoli, E. Mihokova, J. Pejchal, M. Dusek, G. Ren, C. R. Stanek, K. J. McClellan, and D. D. Byler, Phys. Rev. B: Condens. Matter 78, 195123 (2008).ADSCrossRefGoogle Scholar
  33. 34.
    E. M. Zobov, M. E. Zobov, and S. P. Kramynin, J. Appl. Spectrosc. 77 (6), 841 (2011).ADSCrossRefGoogle Scholar
  34. 35.
    W. Xiao-ming, N. Ohno, and Zh. Zhong-ming, Chin. Phys. 10, 874 (2001).ADSCrossRefGoogle Scholar
  35. 36.
    L. Grigorjeva, D. Millers, A. Kalinko, V. Pankratov, and K. Smits, J. Eur. Ceram. Soc. 29, 255 (2009).CrossRefGoogle Scholar
  36. 37.
    H. Haiping, Ye Zhizhen, L. Shisheng, Zh. Binghui, H. Jingyun, and T. Haiping, J. Phys. Chem. C 112, 14262 (2008).CrossRefGoogle Scholar
  37. 38.
    M. Nikl, G. P. Pazzi, P. Fabeni, E. Mihokova, J. Pejchal, D. Ehrentraut, A. Yoshikawa, and R. T. Williams, J. Lumin. 129, 1564 (2009).CrossRefGoogle Scholar
  38. 39.
    A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).CrossRefGoogle Scholar
  39. 40.
    H. He, Z. Ye, S. Lin, B. Zhao, J. Huang, and H. Tang, J. Phys. Chem. C 112, 14262 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. A. Rodnyi
    • 1
  • K. A. Chernenko
    • 1
    Email author
  • A. Zolotarjovs
    • 2
  • L. Grigorjeva
    • 2
  • E. I. Gorokhova
    • 3
  • I. D. Venevtsev
    • 1
  1. 1.Peter the Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  3. 3.Research and Technological Institute of Optical Materials StudiesVavilov Optical InstituteSt. PetersburgRussia

Personalised recommendations