Physics of the Solid State

, Volume 58, Issue 10, pp 1952–1955 | Cite as

Growth and optical properties of filamentary GaN nanocrystals grown on a hybrid SiC/Si(111) substrate by molecular beam epitaxy

  • R. R. Reznik
  • K. P. Kotlyar
  • I. V. Il’kiv
  • I. P. Soshnikov
  • S. A. Kukushkin
  • A. V. Osipov
  • E. V. Nikitina
  • G. E. Cirlin
Semiconductors

Abstract

The potential to grow filamentary GaN nanocrystals by molecular beam epitaxy on a silicon substrate with a nanosized buffer layer of silicon carbide has been demonstrated. Morphological and optical properties of the obtained system have been studied. It has been shown that the intensity of the photoluminescence spectrum peak of such structures is higher than that of the best filamentary GaN nanocrystals without the buffer silicon carbide layer by a factor of more than two.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Pearton and F. Ren, Adv. Mater. (Weinheim) 12, 1571 (2000).CrossRefGoogle Scholar
  2. 2.
    S. Nakamura and G. Fasol, The Blue Laser Diode: GaN-Based Light Emitters and Lasers (Springer-Verlag, New York, 1997).CrossRefGoogle Scholar
  3. 3.
    Ioffe data archive. http://www.ioffe.ru/SVA/NSM.Google Scholar
  4. 4.
    R. N. Kyutt, Tech. Phys. Lett. 36 (8), 690 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    I. G. Aksyanov, V. N. Bessolov, Yu. V. Zhilyaev, M. E. Koman, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, S. N. Rodin, N. A. Feoktistov, Sh. Sharofidinov, and M. P. Shcheglov, Tech. Phys. Lett. 34 (6), 479 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    R. A. Oliver, M. J. Kappers, and C. McAleese, J. Mater. Sci.: Mater. Electron. 19, 208 (2008).Google Scholar
  7. 7.
    D. Cherns, W. T. Young, M. A. Saunders, F. A. Ponce, and S. Nakamura, Microsc. Semicond. Mater. 157, 187 (1997).Google Scholar
  8. 8.
    S. J. Rosner, S. E. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett. 70, 420 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    L. P. Sigiura, J. Appl. Phys. 81, 1633 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50 (7), 1238 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43 (12), 1539 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Zhong, F. Qian, D. Wang, and C. M. Lieber, Nano Lett. 3, 343 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    H. J. Choi, J. C. Johnson, and R. He, J. Phys. Chem. B 107, 8721 (2003).CrossRefGoogle Scholar
  14. 14.
    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    M. Tchernycheva, C. Sartel, G. E. Cirlin, L. Travers, G. Patriarche, J-C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. R. Reznik
    • 1
    • 2
    • 3
  • K. P. Kotlyar
    • 1
    • 4
  • I. V. Il’kiv
    • 1
    • 2
  • I. P. Soshnikov
    • 1
    • 4
    • 5
  • S. A. Kukushkin
    • 1
    • 3
    • 6
  • A. V. Osipov
    • 1
    • 3
    • 6
  • E. V. Nikitina
    • 1
  • G. E. Cirlin
    • 1
    • 3
    • 7
  1. 1.St. Petersburg Academic UniversityRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Ioffe Physiсal-Techniсal InstituteRussian Academy of SciencesSt. PetersburgRussia
  5. 5.St. Petersburg Electrotechnical University “LETI,”St. PetersburgRussia
  6. 6.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  7. 7.Institute for Analytical InstrumentationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations