Physics of the Solid State

, Volume 58, Issue 9, pp 1876–1881 | Cite as

Epitaxial gallium oxide on a SiC/Si substrate

  • S. A. Kukushkin
  • V. I. Nikolaev
  • A. V. Osipov
  • E. V. Osipova
  • A. I. Pechnikov
  • N. A. Feoktistov
Surface Physics and Thin Films


Well-textured gallium oxide β-Ga2O3 layers with a thickness of ~1 μm and a close to epitaxial layer structure were grown by the method of chloride vapor phase epitaxy on Si(111) wafers with a nano-SiC buffer layer. In order to improve the growth, a high-quality silicon carbide buffer layer ~100 nm thick was preliminarily synthesized by the substitution of atoms on the silicon surface. The β-Ga2O3 films were thoroughly investigated using reflection high-energy electron diffraction, ellipsometry, X-ray diffraction, scanning electron microscopy, and micro-Raman spectroscopy. The investigations revealed that the films are textured with a close to epitaxial structure and consist of a pure β-phase Ga2O3 with the (\(\overline 2 01\)) orientation. The dependence of the dielectric constant of epitaxial β-Ga2O3 on the photon energy ranging from 0.7 to 6.5 eV in the isotropic approximation was measured.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 378, 591 (2013).Google Scholar
  3. 3.
    L. Kong, J. Ma, C. Luan, W. Mi, and Y. Lv, Thin Solid Films 520, 4270 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    D. Gogova, G. Wagner, M. Baldini, M. Schmidbauer, K. Irmscher, R. Schewski, Z. Galazka, M. Albrecht, and R. Fornari, J. Cryst. Growth 401, 665 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Wagner, M. Baldini, D. Gogova, M. Schmidbauer, R. Schewski, M. Albrecht, Z. Galazka, D. Klimm, and R. Fornari, Phys. Status Solidi A 211, 27 (2014).CrossRefGoogle Scholar
  6. 6.
    D. J. Comstock and J. W. Elam, Chem. Mater. 24, 4011 (2012).CrossRefGoogle Scholar
  7. 7.
    T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys. 13 (10), 1578 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Oshima, E. G. Víllora, K. Shimamura, E. G. Víllora, K. Shimamura, and K. Nomura, J. Cryst. Growth 410, 53 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, J. Appl. Phys. 118, 085301 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Nikolaev, A. I. Pechnikov, S. I. Stepanov, I. P. Nikitina, A. N. Smirnov, A. V. Chikiryaka, S. S. Sharofidinov, V. E. Bougrov, and A. E. Romanov, Mater. Sci. Semicond. Proc. 47, 16 (2016).CrossRefGoogle Scholar
  11. 11.
    S. I. Stepanov, V. I. Nikolaev, V. E. Bougrov, and A. E. Romanov, Rev. Adv. Mater. Sci. 44, 63 (2016).Google Scholar
  12. 12.
    S. Geller, J. Chem. Phys. 33, 676 (1960).ADSCrossRefGoogle Scholar
  13. 13.
    A. Trinchi, W. Wlodarski, and Y. X. Li, Sens. Actuators, B 100 (1–2), 94 (2004).CrossRefGoogle Scholar
  14. 14.
    A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, and L. Pandolfi, Proc. SPIE—Int. Soc. Opt. Eng. 4936, 327 (2002).ADSGoogle Scholar
  15. 15.
    S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, Chin. Phys. B 20, 116101 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    K. Nomura, K. Gotob, R. Togashia, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, J. Cryst. Growth 405, 19 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    P. Vogt and O. Bierwagen, Appl. Phys. Lett. 106, 081910 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    D. H. Kim, S. H. Yoo, T.-M. Chung, K.-S. An, H.-S. Yoo, and Y. Kim, Bull. Korean Chem. Soc. 23, 225 (2002).CrossRefGoogle Scholar
  19. 19.
    S. Rafique, L. Han, C. A. Zorman, and H. Zhao, Cryst. Growth Des. 16, 511 (2016).CrossRefGoogle Scholar
  20. 20.
    A. HähneL, E. Pippel, and J. Woltersdorf, Cryst. Res. Technol. 35, 663 (2000).CrossRefGoogle Scholar
  21. 21.
    Y. Hijikata, S. Yagi, H. Yaguchi, and S. Yoshida, in Physics and Technology of Silicon Carbide Devices, Ed. by Y. Hijikata (InTech, Rijeka, Croatia, 2012), pp. 181–206.Google Scholar
  22. 22.
    S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56 (8), 1507 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    S. G. Zhukov, S. A. Kukushkin, A. V. Luk’yanov, A. V. Osipov, and N. A. Feoktistov, RF Patent no. 130996, 2013.Google Scholar
  25. 25.
    S. A. Kukushkin and A. V. Osipov, Semiconductors 47 (12), 1551 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    Z. Sun, L. H. Yang, X. C. Shen, and Z. H. Chen, Chi. Sci. Bull. 57, 565 (2012).CrossRefGoogle Scholar
  27. 27.
    R. Rao, A. M. Rao, B. Xu, J. Dong, S. Sharma, and M. K. Sunkara, J. Appl. Phys. 98, 094312 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. A. Kukushkin
    • 1
    • 2
    • 3
  • V. I. Nikolaev
    • 3
    • 4
    • 5
  • A. V. Osipov
    • 1
    • 2
    • 3
  • E. V. Osipova
    • 1
  • A. I. Pechnikov
    • 3
    • 4
  • N. A. Feoktistov
    • 1
    • 5
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia
  4. 4.Perfect Crystals LLCSt. PetersburgRussia
  5. 5.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations