Advertisement

Physics of the Solid State

, Volume 58, Issue 8, pp 1563–1572 | Cite as

Magneto-optical effects for detection of in-plane magnetization in plasmonic crystals

  • A. N. KalishEmail author
  • V. I. Belotelov
Magnetism

Abstract

Methods for magneto-optical detection of the in-plane magnetization in a magnetic film due to the deposition of a one-dimensional metallic diffraction grating on the film have been considered. This structure is a magnetoplasmonic crystal, in which the excitation of the waveguide and plasmon modes leads to the appearance of five resonant magneto-optical effects that consist in a change of the intensity, the polarization, and the phase of the transmitted and reflected waves. The conditions responsible for the origin of these effects and their magnitude are determined by the configuration of the incident light, the parameters of the metallic grating, and the chemical composition of the magnetic layer. It has been found that the magnetophotonic intensity effects are the most optimal for the detection of the in-plane magnetization. The influence of the parameters of the metallic grating on the magneto-optical effects has been analyzed and the most optimal conditions for the observation of these effects have been determined. It has also been found that an increase in the concentration of bismuth in a magnetic dielectric material can lead to a weakening of the optical and magneto-optical responses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magnetophotonics: From Theory to Applications, Ed. by M. Inoue, M. Levy, and A. Baryshev (Springer-Verlag, Berlin, 2013).Google Scholar
  2. 2.
    A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, Bristol, 1997).CrossRefGoogle Scholar
  3. 3.
    J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, Appl. Phys. Lett. 99, 193109 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, Opt. Lett. 35, 1557 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    D. M. Newman, M. L. Wears, R. J. Matelon, and I. R. Hooper, J. Phys.: Condens. Matter 20, 345230 (2008).Google Scholar
  6. 6.
    S. Tkachuk, G. Lang, C. Krafft, O. Rabin, and I. Mayergoyz, J. Appl. Phys. 109, 07B717 (2011).CrossRefGoogle Scholar
  7. 7.
    V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogue[acute]s, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, Nano Lett. 11, 5333 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    J. C. Banthi, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, Adv. Mater. (Weinheim) 24, OP36 (2012).Google Scholar
  9. 9.
    Y. M. Strelniker and D. J. Bergman, Phys. Rev. B: Condens. Matter 77 (20), 205113 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, J. Magn. Magn. Mater. 324, 3516 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, Appl. Phys. Lett. 97, 261908 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. V. Sapozhnikov, S. A. Gusev, B. B. Troitskii, and L. V. Khokhlova, Opt. Lett. 36, 4197 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    N. Kostylev, I. S. Maksymov, A. O. Adeyeye, S. Samarin, M. Kostylev, and J. F. Williams, Appl. Phys. Lett. 102, 121907 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    B. Bai, J. Tervo, and J. Turunen, New J. Phys. 8, 205 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    K. Fang, Z. Yu, V. Liu, and S. Fan, Opt. Lett. 36, 4254 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. Belotelov, B. Stritzker, and H. Giessen, Nat. Commun. 4, 1599 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    B. Caballero, A. García-Martín, and J. C. Cuevas, Opt. Express 23, 22238 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    R. Kekesi, D. Martín-Becerra, D. Meneses-Rodríguez, F. García-Pérez, A. Cebollada, and G. Armelles, Opt. Expr. 23, 8128 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    D. Martín-Becerra, J. M. García-Martín, Y. Huttel, and G. Armelles, J. Appl. Phys. 117, 053101 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    N. A. Gusev, V. I. Belotelov, and A. K. Zvezdin, Opt. Lett. 39, 4108 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, Achanta Venu Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, Nat. Nanotechnol. 6, 370 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. V. Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, et al., Nat. Commun. 4, 2128 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    N. E. Khokhlov, A. R. Prokopov, A. N. Shaposhnikov, V. N. Berzhansky, M. A. Kozhaev, S. N. Andreev, A. P. Ravishankar, Achanta Venu Gopal, D. A. Bykov, A. K. Zvezdin, and V. I. Belotelov, J. Phys.: Condens. Matter 48, 095001 (2015).Google Scholar
  24. 24.
    V. I. Belotelov, L. E. Kreilkamp, A. N. Kalish, I. A. Akimov, D. A. Bykov, S. Kasture, V. J. Yallapragada, Achanta Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, et al., Phys. Rev. B: Condens. Matter 89 (4), 045118 (1–19) (2014).Google Scholar
  25. 25.
    L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, Th. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, Phys. Rev. X 3 (4), 041019 (2013).Google Scholar
  26. 26.
    M. Pohl, L.E. Kreilkamp, V.I. Belotelov, I.A. Akimov, A. N. Kalish, N.E. Khokhlov, V.J. Yallapragada, A. V. Gopal, M. Nur-E-Alam, M. Vasiliev, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, New J. Phys. 15, 075024 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Belotelov, L. E. Kreilkamp, A. N. Kalish, I. A. Akimov, D. A. Bykov, S. Kasture, V. J. Yallapragada, Achanta Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, et al., Phys. Rev. B: Condens. Matter 89 (4), 045118 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    V. Korepanov and A. Marusenkov, Surv. Geophys. 33, 1059 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    J. Petrou, S. Diplas, H. Chiriac, and E. Hristoforou, J. Opt. Adv. Mater. 8, 1715 (2006).Google Scholar
  30. 30.
    S. Tumanski, Handbook of Magnetic Measurements (CRC Press, Boca Raton, Florida, United States, 2011).CrossRefGoogle Scholar
  31. 31.
    P. M. Vetoshko, A. K. Zvezdin, V. A. Skirdanov, I. I. Syvorotka, I. M. Syvorotka, and V. I. Belotelov, Tech. Phys. Lett. 41 (5), 458 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    J. S. W. Kwong, B. Leithäuser, J.-W. Park, and Ch.-M. Yu, Int. J. Cardiol. 167, 1835 (2013).CrossRefGoogle Scholar
  33. 33.
    M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    L. Li, J. Opt. A: Pure Appl. Opt. 5, 345 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    P. B. Johnson and R. W. Christy, Phys. Rev. B: Solid State 6 (12), 4370 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    P. Hansen and J.-P. Krumme, Thin Solid Films 114, 69 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    A. N. Kalish, V. I. Belotelov, and A. K. Zvezdin, in Proceedings of the 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2015), Oxford, United Kingdom, September 7–10, 2015, p. 610.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Russian Quantum CenterMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations