Physics of the Solid State

, Volume 58, Issue 7, pp 1458–1462 | Cite as

Quasi-two-dimensional diamond crystals: Deposition from a gaseous phase and structural–morphological properties

  • A. M. Alexeev
  • R. R. Ismagilov
  • E. E. Ashkinazi
  • A. S. Orekhov
  • S. A. Malykhin
  • A. N. Obraztsov
Surface Physics and Thin Films

Abstract

Diamond films predominantly consisting of plane micrometer-size crystallites with a thickness of several dozen nanometers have been deposited from a methane–hydrogen gas mixture activated by a dc gas discharge. The crystallite structure has been studied by scanning and transmission electron microscopy and diffraction. A possible mechanism of formation of plane crystallites during deposition of diamond from the gas phase has been discussed. It has been shown that the results agree with the theoretical concepts of formation of crystals with a face-centered cubic lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Gogotsi, MRS Bull. 40, 1110 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Goodwin, J. Butler, M. Prelas, G. Popovici, and L. Bigelow, Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).Google Scholar
  3. 3.
    H. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Noyes, New York, 1993).Google Scholar
  4. 4.
    A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, and M. B. Plenio, New J. Phys. 16, 093002 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, Nat. Nanotechnol. 5, 195 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. J. Burek, B. J. Shields, N. P. de Leon, B. Hausmann, Y. Chu, Q. Quan, M. D. Lukin, and M. Loncar, CLEO: Sci. Innovations 1, CM1M. 2 (2012).Google Scholar
  7. 7.
    J. Gracio, Q. Fan, and J. Madaleno, J. Phys. D: Appl. Phys. 43, 374017 (2010).CrossRefGoogle Scholar
  8. 8.
    F. T. Tuyakova, E. A. Obraztsova, and R. R. Ismagilov, J. Nanophotonics 10, 12517 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, and P. Koidl, Diamond Relat. Mater. 3, 373 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Zolotukhin, M. A. Dolganov, A. M. Alekseev, and A. N. Obraztsov, Diamond Relat. Mater. 42, 15 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    A. Zolotukhin, P. G. Kopylov, R. R. Ismagilov, and A. N. Obraztsov, Diamond Relat. Mater. 19, 1007 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    R. R. Ismagilov, I. R. Khamidullin, V. I. Kleshch, S. A. Malykhin, A. M. Alexeev, and A. N. Obraztsov, J. Nanophotonics 10, 12503 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    R. R. Ismagilov, A. A. Zolotukhin, P. V. Shvets, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 90 (2012).CrossRefGoogle Scholar
  14. 14.
    I. Aharonovich, J. C. Lee, A. P. Magyar, D. O. Bracher, and E. L. Hu, Laser Photonics Rev. 7, L61 (2013).CrossRefGoogle Scholar
  15. 15.
    I. Aharonovich and E. Neu, Adv. Opt. Mater. 2, 911 (2014).CrossRefGoogle Scholar
  16. 16.
    B. Hausmann, B. Shields, Q. Quan, Y. Chu, N. de Leon, R. Evans, M. Burek, A. Zibrov, M. Markham, and D. Twitchen, Nano Lett. 13, 5791 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    M. Kasperczyk, A. Jorio, E. Neu, P. Maletinsky, and L. Novotny, Opt. Lett. 40, 2393 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B: Condens. Matter 75, 153401 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90 (2), 134 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    J. C. Angus, M. Sunkara, S. R. Sahaida, and J. T. Glass, J. Mater. Res. 7, 3001 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    C.-A. Lu and L. Chang, Mater. Chem. Phys. 92, 48 (2005).CrossRefGoogle Scholar
  22. 22.
    C.-A. Lu and L. Chang, Diamond Relat. Mater. 13, 2056 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    B. Spitsyn, L. Bouilov, and B. Derjaguin, J. Cryst. Growth 52, 219 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    D. M. Gruen, Annu. Rev. Mater. Sci. 29, 211 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    R. R. Ismagilov, P. V. Shvets, A. Yu. Kharin, and A. N. Obraztsov, Crystallogr. Rep. 56 (2), 310 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    R. I. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 4, 243 (2009).CrossRefGoogle Scholar
  27. 27.
    R. R. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, Chem. Vap. Deposition 19, 332 (2013).CrossRefGoogle Scholar
  28. 28.
    B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, Prog. Cryst. Growth Charact. 17, 79 (1988).CrossRefGoogle Scholar
  29. 29.
    D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, and H. Song, J. Phys. Chem. C 112, 2469 (2008).CrossRefGoogle Scholar
  30. 30.
    L. Marks, J. Cryst. Growth 61, 556 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    G. Wulff, Z. Kristallogr. 34, 449 (1901).Google Scholar
  32. 32.
    E. Ringe, IUCrJ 1, 530 (2014).CrossRefGoogle Scholar
  33. 33.
    E. Ringe, R. P. Van Duyne, and L. D. Marks, J. Phys. Chem. C 117, 15859 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Alexeev
    • 1
    • 2
  • R. R. Ismagilov
    • 1
    • 2
  • E. E. Ashkinazi
    • 2
  • A. S. Orekhov
    • 1
    • 3
  • S. A. Malykhin
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations