Physics of the Solid State

, Volume 58, Issue 6, pp 1216–1221 | Cite as

Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method

  • D. A. Kurdyukov
  • A. B. Pevtsov
  • A. N. Smirnov
  • M. A. Yagovkina
  • V. Yu. Grigorev
  • V. V. Romanov
  • N. T. Bagraev
  • V. G. Golubev
Low-Dimensional Systems


A method has been proposed for the formation of three-dimensional arrays of isolated magnetic clusters NiO, Co3O4, and NiCo2O4 in the sublattice of pores in the matrix of bulk synthetic opals through a single impregnation of the pores with melts of nickel and cobalt nitrate crystal hydrates and their thermal degradation. The method makes it possible to controllably vary the degree of filling of pores in the matrix with oxides within 10–70 vol %. The composition and structure of the synthesized materials, as well as the dependences of their static magnetic susceptibility on the magnetic field strength, have been investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Sellmyer and R. Skomski, Advanced Magnetic Nanostructures (Springer-Verlag, New York, 2006).CrossRefGoogle Scholar
  2. 2.
    B. Balamurugan, R. Skomski, and D. J. Sellmyer, in Nanoparticles: Synthesis, Characterization and Application, Ed. by R. S. Chaughule and R. V. Ramanujan (American Scientific, Valencia, California, United States, 2010), pp. 127–162.Google Scholar
  3. 3.
    V. N. Bogomolov and T. M. Pavlova, Semiconductors 29 5, 428 (1995).ADSGoogle Scholar
  4. 4.
    R. G. Shimmin, R. Vajtai, R. W. Siegel, and P. V. Braun, Chem. Mater. 19, 2102 (2007).CrossRefGoogle Scholar
  5. 5.
    P. Lodahl, A. F. Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature (London) 430, 654 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    S. G. Romanov, A. S. Susha, C. M. Sotomayor Torres, Z. Liang, and F. Caruso, J. Appl. Phys. 97, 086103 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    M. Salaün, B. Corbett, S. B. Newcomb, and M. E. Pemble, J. Mater. Chem. 20, 7870 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Kodama, K. Nishimura, A. V. Baryshev, H. Uchida, and M. Inoue, Phys. Status Solidi B 241, 1597 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    T. V. Murzina, E. M. Kim, R. V. Kapra, I. V. Moshnina, O. A. Aktsipetrov, D. A. Kurdyukov, S. F. Kaplan, V. G. Golubev, M. A. Bader, and G. Marowsky, Appl. Phys. Lett. 88, 022501 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    D. A. Kurdyukov, Nanotekhnika, No. 4, 18 (2007).Google Scholar
  11. 11.
    V. N. Bogomolov, L. M. Sorokin, D. A. Kurdyukov, T. M. Pavlova, and J. L. Hutchison, Phys. Solid State 39 11, 1869 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    L. M. Sorokin, V. N. Bogomolov, J. L. Hutchison, D. A. Kurdyukov, A. V. Chernyaev, and T. N. Zaslavskaya, Nanostruct. Mater. 12, 1081 (1999).CrossRefGoogle Scholar
  13. 13.
    E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid J. 73 4, 546 (2011).CrossRefGoogle Scholar
  14. 14.
    B. Malecka, A. Lacz, E. Drozdz, and A. Malecki, J. Therm. Anal. Calorim. 119 2, 1053 (2015).CrossRefGoogle Scholar
  15. 15.
    D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).CrossRefGoogle Scholar
  16. 16.
    V. G. Hadjiev, M. N. Iliev, and I. V. Vergilov, J. Phys. C: Solid State Phys. 21, Ll99 (1988).CrossRefGoogle Scholar
  17. 17.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys.: Conf. Ser. 93 1, 012039 (2007).ADSGoogle Scholar
  18. 18.
    M. N. Iliev, P. Silwal, B. Loukya, R. Datta, D. H. Kim, N. D. Todorov, N. Pachauri, and A. Gupta, J. Appl. Phys. 114 3, 033514 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    V. Yu. Davydov, V. G. Golubev, N. F. Kartenko, D. A.Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, P. Brogueira, and R. Schwarz, Nanotechnology 11, 291 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Golubev, V. Yu. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov, and E. B. Shadrin, Appl. Phys. Lett. 79 14, 2127 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    S. A. Grudinkin, S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, and V. G. Golubev, J. Phys. Chem. C 112, 17855 (2008).CrossRefGoogle Scholar
  22. 22.
    R. J. Powell and W. E. Spicer, Phys. Rev. B: Solid State 2, 2182 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    J. G. Cook and M. P. van der Meer, Thin Solid Films 144 2, 165 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    D. Carta, M. F. Casula, A. Corrias, A. Falqui, D. Loche, G. Mountjoy, and P. Wang, Chem. Mater. 21, 945 (2009).CrossRefGoogle Scholar
  25. 25.
    S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, and V. G. Golubev, Appl. Phys. Lett. 86, 071108 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, A. V.Medvedev, A. G. Badalyan, and V. G. Golubev, Photonics Nanostruct. Fundam. Appl. 5 1, 37 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    D. A. Kurdyukov, I. I. Shishkin, S. A. Grudinkin, A. A. Sitnikova, M. V. Zamoryanskaya, and V. G. Golubev, Semiconductors 49 5, 658 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    G. M. Gajiev, V. G. Golubev, D. A. Kurdyukov, A.V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and V. V. Travnikov, Phys. Rev. B: Condens. Matter 72, 205115 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. A. Kurdyukov
    • 1
    • 3
  • A. B. Pevtsov
    • 1
  • A. N. Smirnov
    • 1
  • M. A. Yagovkina
    • 1
  • V. Yu. Grigorev
    • 2
  • V. V. Romanov
    • 2
  • N. T. Bagraev
    • 1
    • 2
  • V. G. Golubev
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations